
Document Number: MD00428
Revision 01.18
April 11, 2008

MIPS Technologies, Inc.
1225 Charleston Road

Mountain View, CA 94043-1353

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

MIPS® SDE 6.x Programmer’s Guide

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

Template: nB1.03, Built with tags: 2B

Copyright © 2000-2008 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies"). Any copying, reproducing, modifying or use of
this information (in whole or in part) that is not expressly permitted in writing by MIPS Technologies or an authorized third party is strictly prohibited. At a
minimum, this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution
restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT
PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN
PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve function, design or otherwise. MIPS Technologies does
not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether
express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded.
Except as expressly provided in any written license agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not
give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in violation of the law of any
country or international law, regulation, treaty, Executive Order, statute, amendments or supplements thereto. Should a conflict arise regarding the export,
reexport, transfer, or release of the information contained in this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial computer software
documentation or other commercial items. If the user of this information, or any related documentation of any kind, including related technical data or manuals,
is an agency, department, or other entity of the United States government ("Government"), the use, duplication, reproduction, release, modification, disclosure,
or transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian
agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPSsim, MIPSpro, MIPS Technologies
logo, MIPS-VERIFIED, MIPS-VERIFIED logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, 5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf,
24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, R3000, R4000, R5000, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus
Navigator, CLAM, CorExtend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug,
HyperJTAG, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, OCI, PDtrace, the Pipeline, Pro Series, SEAD, SEAD-2, SmartMIPS, SOC-it, System
Navigator, and YAMON are trademarks or registered trademarks of MIPS Technologies, Inc. in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

3 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

Table of Contents

Chapter 1: Introduction .. 7

Chapter 2: Target-specific Libraries ... 9
2.1: Building for ISA and CPU Variants .. 13

Chapter 3: Example Programs .. 15
3.1: Individual Examples... 15

3.1.1: Hello World!.. 15
3.1.2: TLB Exception Handling (tlbxcpt)... 15
3.1.3: Command Line Monitor (minimon)... 15
3.1.4: Floating Point Test (paranoia).. 16
3.1.5: Dhrystone Benchmark.. 16
3.1.6: Whetstone Benchmark... 17
3.1.7: Linpack Benchmark.. 17
3.1.8: C++ Demo... 17
3.1.9: Kit Test .. 17
3.1.10: Flash Memory Test .. 17
3.1.11: PCI Bus Demo ... 17
3.1.12: Decompressing Boot Loader.. 18
3.1.13: Linux AP/RP Communication... 18
3.1.14: Interrupt Example... 18

3.2: Example Makefiles .. 18

Chapter 4: Standard Libraries ... 23
4.1: ISO / ANSI Library ... 23

4.1.1: ISO C99 Library Support.. 24
4.1.2: Thread Safety... 25
4.1.3: Minimal C Library ... 25

4.2: IEEE-754 Floating Point Emulation Library ... 25
4.3: Multilibs.. 26
4.4: Library Source Code.. 26

Chapter 5: MIPS® Architecture Intrinsics .. 29
5.1: Intrinsics for Byte Swapping .. 29
5.2: Intrinsics for MIPS32® Architecture... 30
5.3: Intrinsics for MIPS32® Release 2 Architecture ... 30
5.4: Intrinsics for MIPS64® Release 2 Architecture ... 31
5.5: Intrinsics for CorExtendCoreTrade Extension... 31
5.6: Intrinsics for COP2 Extension.. 34
5.7: Intrinsics for SmartMIPS® ASE... 35
5.8: Intrinsics for Paired-single/MIPS-3D® Architecture... 37
5.9: Intrinsics for MIPS MT ASE ... 37
5.10: Intrinsics for MIPS DSP ASE... 37

5.10.1: Vector Data Types ... 38
5.10.2: Scalar data types ... 40
5.10.3: Compiler Builtin Functions ... 41

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 4

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

5.10.4: Compiler Builtins for Second Revision ... 43
5.10.5: Intrinsics for Atomic R-M-W ... 44
5.10.6: Intrinsics for Data Prefetch... 45

Chapter 6: SDE Run-time I/O System ... 47
6.1: POSIX API Environment.. 47

6.1.1: Remote File I/O .. 47
6.1.1.1: Host File Access... 47

6.1.2: Terminal I/O (/dev/tty) .. 48
6.1.3: Linux AP/RP Communication (/dev/lx#) ... 49
6.1.4: Flash Memory Devices (/dev/flash).. 49
6.1.5: Alpha Display (/dev/panel) ... 52
6.1.6: Signal Handling .. 55
6.1.7: Elapsed Time Measurement .. 55
6.1.8: Interval Timing.. 56
6.1.9: PCI Bus Support .. 57

Chapter 7: CPU Management .. 61
7.1: CPU Initialization ... 61
7.2: Exception and Interrupt Handling .. 61

7.2.1: C-level Exceptions ... 61
7.2.1.1: Error Handling .. 62

7.2.2: RTOS Context Switch .. 63
7.2.3: C-level Interrupts.. 63

7.2.3.1: Interrupt Priorities ... 64
7.2.3.2: Software interrupts ... 65

7.3: Cache Maintenance... 66
7.4: TLB Maintenance .. 67
7.5: Hardware Watchpoints .. 68
7.6: System Coprocessor (CP0) Intrinsics.. 70

7.6.1: Common CP0 Registers .. 71
7.6.2: CP0 Registers of MIPS32®/MIPS64® Architecture... 72
7.6.3: CP0 Registers of MIPS32®/MIPS64® Release 2 Architecture.. 73
7.6.4: Shadow Sets of MIPS32®/MIPS64® Release 2 Architecture.. 74
7.6.5: CP0 Registers of MIPS® MT ASE ... 74

7.7: Miscellaneous System Support ... 77
7.8: Floating Point Coprocessor (CP1)... 78

7.8.1: Coprocessor 1 Emulation... 79

Chapter 8: Embedded System Kit Source.. 81
8.1: POSIX System Interface.. 81

8.1.1: Run-time Initialization... 82
8.1.2: Run-time Termination... 83

8.2: Target-specific Code ... 83
8.2.1: PCI Bus Configuration.. 83

8.3: Monitor-specific Glue... 83
8.4: Low-level CPU Management... 84

8.4.1: CPU Reset Handling .. 86
8.4.2: Exception Handlers .. 87
8.4.3: Remote Debug Stub... 87

8.4.3.1: Hardware-specific Debug Support.. 88
8.4.3.2: Multi-threading Support .. 88

5 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

Chapter 9: Retargeting the Toolkit .. 89
9.1: Common Device Files ... 91

Appendix A: References .. 93

Appendix B: Revision History ... 95

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 6

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

List of Tables

Table 2.1: Supported Target Boards and Simulators.. 10
Table 3.1: Example Makefile Output Files .. 18
Table 3.2: User-Changeable “Make” Variables for Program Building ... 20
Table 6.1: Flash Memory Partition Types ... 49
Table 6.2: POSIX Signal List .. 55
Table 7.1: Interrupt Priorities... 64
Table 7.2: Hardware Watchpoint Attributes .. 68
Table 7.3: Watchpoint Return Codes.. 69
Table 7.4: Register Access Intrinsics .. 70
Table 8.1: Supported PROM Monitors .. 84
Table 9.1: Board-specific Files.. 89

Chapter 1

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 7

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

Introduction

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 8

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

Chapter 2

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 9

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

Target-specific Libraries

SDE’s run-time system provides an identical software interface across a range of different evaluation boards and soft-
ware simulators, known here as “targets”. The run-time system is provided as full source code for MTK customers,
but as pre-compiled object files for most other users. Under the control of a per-target configuration file, it is built
into a set of libraries specific to the chosen target. Much of the run-time code is generic and will work on any MIPS-
based target, but drivers specific to a range of popular MIPS Technologies boards and simulators are included. For
MTK customers, it is straight-forward to add a new target, as described in Chapter 9, “Retargeting the Toolkit” on
page 89.

The supported target configurations are listed in Table 2.1. The columns are as follows:

• Platform: the evaluation board or software simulator.

• CPU: supported CPU types.

• Base ISA: base instruction set architecture. You can add variants like the MIPS16 ASE and the Release 2 exten-
sions to this, see Section 2.1 “Building for ISA and CPU Variants”.

• FPU Type: floating point hardware model. “None” implies software floating point; “64-bit” implies a 64-bit
hardware FPU with the CPU's Status.FR bit set; and “32-bit” implies either a 32-bit FPU or a 64-bit FPU with
the FR bit clear.

• Endian: CPU endianness. For a hardware target this must match the board's switch settings.

• Connection: how the sde-gdb debugger communicates with the target. “YAMON'' implies a serial port connec-
tion to the YAMON Monitor; “MDI+EJTAG” is an EJTAG probe with MDI debugger interface; “MTSPMON''
refers to the Linux AP/RP pseudo-monitor.

• SDB: “System Board Description”, an identifier which describes this target to the SDE makefile system.

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 10

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

Table 2.1 Supported Target Boards and Simulators

Platform CPUs Base ISA FPU Type Endian Debug Conn SBD

MIPS AtlasTM 4Kc, 4Km, 4Kp MIPS32 None
BE YAMON ATLASLV4B

LE ATLASLV4L

MIPS SEAD-2TM

4Kc, 4Km, 4Kp,
4KEc, 4KEm,
4KEp, 4KSc,
4KSd, M4K

MIPS32 None

LE
YAMON

SEAD32L

BE SEAD32B

LE
MDI + EJTAG

SEAD32LJ

BE SEAD32BJ

5Kf, 20Kc, 25Kf MIPS32 32-bit

LE
YAMON

SEAD32FL

BE SEAD32FB

LE
MDI + EJTAG

SEAD32FLJ

BE SEAD32FBJ

24Kf, 24KEf,
34Kf

MIPS32
Release 2

32-bit

LE
YAMON

SEAD32F64L

BE SEAD32F64B

LE
MDI + EJTAG

SEAD32F64LJ

BE SEAD32F64BJ

5Kc MIPS64 None

LE
YAMON

SEAD64L

BE SEAD64B

LE
MDI + EJTAG

SEAD64LJ

BE SEAD64BJ

5Kf, 20Kc, 25Kf MIPS64 64-bit

LE
YAMON

SEAD64FL

BE SEAD64FB

LE
MDI + EJTAG

SEAD64FLJ

BE SEAD64FBJ

 Target-specific Libraries

11 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

MIPS MaltaTM

M4K MIPS16e None

LE
YAMON

MALTAM4KL

BE MALTAM4KB

LE
MDI + EJTAG

MALTAM4KLJ

BE MALTAM4KBJ

4Kc, 4Km, 4Kp,
4KEc, 4KEm,
4KEp, 4KSc,

4KSd, M4K, 5Kc,
24Kc, 24KEc,
34Kc, 74Kc

MIPS16e None

LE
YAMON

MALTA16L

BE MALTA16B

LE
MDI + EJTAG

MALTA16LJ

BE MALTA16BJ

4Kc, 4Km, 4Kp,
4KSc, 5Kc

MIPS32 None

LE
YAMON

MALTA32L

BE MALTA32B

LE
MDI + EJTAG

MALTA32LJ

BE MALTA32BJ

4KEc, 4KEm,
4KEp, 4KSd,
MrK, 24Kc,

24KEc, 34Kc,
74Kc

MIPS32
Release2

None

LE
YAMON

MALTA32R2L

BE MALTA32R2B

LE
MDI + EJTAG

MALTA32R2LJ

BE MALTA32R2BJ

5Kf, 20Kc, 25Kf MIPS32 32-bit

LE
YAMON

MALTA32FL

BE MALTA32FB

LE
MDI + EJTAG

MALTA32FLJ

BE MALTA32FBJ

24Kf, 24KEf,
34Kf, 74Kf

MIPS16e 64-bit

LE
YAMON

MALTA16FL

BE MALTA16FB

LE
MDI + EJTAG

MALTA16FLJ

BE MALTA16FBJ

MIPS32
Release 2

64-bit

LE
YAMON

MALTA32R2FL

BE MALTA32R2FB

LE
MDI + EJTAG

MALTA32R2FLJ

BE MALTA32R2FBJ

34Kc, 34Kf

MIPS32
Release 2 + MT

ASE

None

LE MTSPMON MALTA32LSP

BE MALTA32BSP

LE
YAMON

MALTA32MTL

BE MALTA32MTB

LE
MDI + EJTAG

MALTA32MTLJ

BE MALTA32MTBJ

34Kf 64-bit

LE
YAMON

MALTA32MTFL

BE MALTA32MTFB

LE
MDI + EJTAG

MALTA32MTFLJ

BE MALTA32MTFBJ

Table 2.1 Supported Target Boards and Simulators (Continued)

Platform CPUs Base ISA FPU Type Endian Debug Conn SBD

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 12

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

MIPS MaltaTM

5Kc MIPS64 None

LE
YAMON

MALTA64L

BE MALTA64B

LE
MDI + EJTAG

MALTA64LJ

BE MALT64BJ

5Kf, 20Kc, 25Kf MIPS64 64-bit

LE MALTA64FL

BE
YAMON

MALTA64FB

LE MALTAF64FLJ

BE MDI + EJTAG MALTA64FBJ

MIPSSim

M4K
MIPS16e None LE

MDI
MSIMM4KL

BE MSIMM4KB

4Kc, 4Km, 4Kp,
4KEc, 4KEm,
4KEp, 4KSc,

4KSd, M4K, 5Kc,
24Kc, 24KEc,
34Kc, 74Kc

MIPS16e None LE

MDI

MSIM16L

BE MSIM16B

4Kc, 4Km, 4Kp,
4KSc, 5Kc

MIPS32 None LE MSIM32L

BE
MDI

MSIM32B

4KEc, 4KEm,
4KEp, 4KSd,
MRK, 24Kc,
24KEc, 34Kc,

74Kc

MIPS32
Release2

None LE MSIM32R2L

BE MSIM32R2B

5Kf, 20Kc, 25Kf MIPS32 32-bit
LE

MDI
MSIM32FL

BE MSIM32FB

24Kf, 24KEf,
34Kf, 74Kf

MIPS16e 64-bit
LE

MDI
MSIM16FL

BE MSIM16FB

MIPS32
Release 2

64-bit
LE

MDI
MSIM32R2FL

BE MSIM32R2FB

34Kc
MIPS32 R2 +

MT ASE

None
LE

MDI
MSIM32MTL

BE MSIM32MTB

34Kf 64-bit
LE

MDI
MSIM32MTFL

BE MSIM32MTFB

5Kc MIPS64 None
LE

MDI
MSIM64L

BE MSIM64B

5Kf, 20Kc, 25Kf MIPS64 64-bit
LE

MSIM
MSIM64FL

BE MSIM64FB

Table 2.1 Supported Target Boards and Simulators (Continued)

Platform CPUs Base ISA FPU Type Endian Debug Conn SBD

 Target-specific Libraries

13 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

The SBD column gives the short-form name of the board. This name identifies the sub-directory of .../sde/kit
which contains the configuration files and possibly driver source code for this target. So, for example, the directory
.../sde/kit/MALTA32L holds the target-specific information and code for MIPS Technologies' Malta board,
with a MIPS32 CPU, without hardware floating point, little-endian, and debugging via a serial connection to the
YAMON monitor.

To build the run-time library for one of the above targets, you simply go to its directory and run sde-make:

$ cd .../kit/MALTA32L
$ sde-makeIsde-make :

Having successfully built the library, you can then build any or all of the example programs. When building an exam-
ple the first time, you need to specify the value of SBD on the sde-make command line:

$ cd *[rootpath]/examples/hello
$ sde-make SBD=MALTA32L

This creates a file named MALTA32L.sbd in the working directory which records SDB and SDBTOP; further make
makes will pick them up as default values. When you upgrade to a newer version of SDE, remove all generated files
with:

$ sde-make clobber

Note: Specifying a different SDB value will cause the example makefiles to delete all object files and rebuild the pro-
gram.

2.1 Building for ISA and CPU Variants

Due to the large range of processor cores and different ISAs and ASEs which are available on MIPS Technologies
evaluation boards and simulators, the run-time libraries for the Malta and SEAD-2 evaluation boards and the
MIPSSim simulator are configured for just a small number of base-level ISAs. If you want to build an application or
benchmark that exploits a particular extended ISA or ASE, such as the MIPS32 ISA, or the SmartMIPS and MIPS16
ASE, then this is easily done when building your application by using the Makefiles' APPISA variable (see Section
3.2 “Example Makefiles”). Just pick the value of SBD which most closely matches your target board and CPU con-
figuration, and then specify the extended ISA as follows:

$ cd .../sde/examples/ex5
$ sde-make SBD=MSIM32L APPISA=-mips32r2
$ sde-make SBD=MSIM32L APPISA=”-mips32 -mips16”
$ sde-make SBD=MSIM32R2L APPISA=”-mips32r2 -msmartmips”
$ sde-make SBD=MSIM32R2L APPISA=”-mips32r2 -mdsp”

GNU Simulator

any MIPS32 32-bit
LE

builtin
GSIM32L

BE GSIM32B

any MIPS16e 32-bit
LE

builtin
GSIM16EL

BE GSIM16EB

any MIPS64 64-bit
LE

builtin
GSIM64L

BE GSIM64B

Table 2.1 Supported Target Boards and Simulators (Continued)

Platform CPUs Base ISA FPU Type Endian Debug Conn SBD

2.1 Building for ISA and CPU Variants

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 14

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

Similarly you can optimize the application for a specific CPU type using the APPCPU variable, for example:

$ cd .../sde/examples/dhrystone
$ sde-make SBD=MSIM32R2L APPCPU=74kc

Chapter 3

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 15

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

Example Programs

The .../sde/examples directory contains several small programs which demonstrate the use of SDE. They are
each held in individual sub-directories, listed below, and they can all be built to execute in RAM under the control of
a board's PROM monitor, or via an EJTAG probe, or (on some targets) blown into ROM, or run by a simulator.

All of the examples are built under the control of a common include file .../sde/examples/make.mk, which
uses the board-specific parameters selected by the SBD variable to compile and link each program with the correct
compiler flags and libraries.

We suggest that you first try building the examples and running them with the GNU simulator to see how they
behave.

When you are happy with this, you can build the board-specific library for your target as documented in Chapter 2,
“Target-specific Libraries” on page 9, and then rebuild the examples.

The remainder of this chapter describes the purpose of each example program.

3.1 Individual Examples

3.1.1 Hello World!

The program in .../sde/examples/hello/hello.c is simply everyone's first program - just to get you
started!

3.1.2 TLB Exception Handling (tlbxcpt)

The example in .../xde/examples/tlbxcpt introduces SDE’s interface to low-level CPU exceptions. These
are called xcptions, and are described in Section 7.2.1 “C-level Exceptions”. This program randomly accesses mem-
ory via the mapped KUSEG and KSEG2 regions (MIPS architecture magic words, read [Sweet99] if you don't know
what they mean). On catching the resulting “TLB Miss” exceptions, it updates the TLB and returns to the faulting
instruction. On completion it displays the number of TLB misses.

Note that some MIPS-Based CPUs don't have a TLB, and they will not be able to run this example.

3.1.3 Command Line Monitor (minimon)

This example provides a very simple command line monitor program, which is actually quite useful for peeking and
poking devices on a new target, and can form the basis of useful command-line test harnesses. Type help at it for a
list of commands.

One thing to note in this program is its use of POSIX signal-handling to catch address errors, and to test SDE’s inter-
val timing functions (see Section 6.1 “POSIX API Environment”). In fact, the program was written and tested on a
UNIX system before being ported to SDE.

3.1 Individual Examples

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 16

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

This example might also be a good one with which to try out the sde-gdb debugger. If you reference an invalid
address with the put or get commands (e.g. “g 1” will cause an address exception), then the debugger will be
entered, allowing you to examine the cause of the exception.

Another useful piece of example code provided within this program is an ELF object file loader, which can load an
ELF executable from a supported file-like device into memory - for example a flash ROM. See the com_boot func-
tion.

The ELF file loader is also capable of loading, relocating and then invoking a self-contained position-independent
dynamic shared object (DSO) file. Self-contained means that the shared object must contain no undefined external
references - the loader isn't yet smart enough to resolve symbols. You can try this out on a simulator target, as fol-
lows:

1. Build and run the minimon example for a simulator target, for example:

$ sde-make SBD=MSIM32L

2. Build the example DSO as follows:

$ sde-make SBD=MSIM32L dso

3. Load and run the minimon example on a simulator:

$ [gdb-cmd] miniram
(gdb) target mdi 15:1
(gdb) load
(gdb) run
minimon> boot dso

3.1.4 Floating Point Test (paranoia)

The source file .../sde/examples/paranoia/paranoia.c is a public domain program, originally written
by one of the creators of the IEEE-754 floating point standard. It is used to test many aspects of the standard: from the
basic arithmetic, to the niggly rounding modes, overflow, underflow etc. We use it to test our software floating point
emulation. You can use it to check that the floating point infrastructure of SDE is correctly installed and configured
for your target.

3.1.5 Dhrystone Benchmark

The well known dhrystone benchmark (version 2.1) is in .../sde/examples/dhrystone/dhry.c. It serves
as an example of how to port a simple integer-only benchmark. It only required configuration to use the ISO/ ANSI
clock() function for its timing, and a minor change to disable it from attempting to write its results to a disk file.

The makefile for this example switches on high optimization (-O3).

Note that when using the MIPSSim simulator, the elapsed time for benchmarks is calculated from the simulator's
cycle count, and then assuming that the simulated CPU is running at only 100\|kHz (with a 300MHz PC that will
actually be close to real time, since the simulator runs at about 3000 instructions to 1) - you'll then have to scale the
elapsed time to get a correct result for the expected target CPU frequency (e.g. for a 250MHz target divide the elapsed
time by 2500, or multiply the benchmark result by 2500).

 Example Programs

17 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

The GNU simulator can be used to debug benchmark programs like dhrystone, but it is an “instruction” simulator
only. It makes no attempt to be cycle accurate, and does not simulate hardware timers or clocks, so programs will dis-
play a zero elapsed time. To get representative timings of simulated benchmark code you must use MIPSSim.

3.1.6 Whetstone Benchmark

The double-precision whetstone benchmark is in .../sde/examples/whetstone/whetd.c. It is an example
of how to port a floating point benchmark. The only change was to make it use the ISO / ANSI clock()function to
do its timing. It is built with high optimization (-O3 -ffast-math).

Note that software floating point emulation is enabled when compiling for the R3000 emulator.

For more information on the use of floating point, see Section 3.2 “Example Makefiles”.

3.1.7 Linpack Benchmark

Another well-known floating point benchmark is in directory .../sde/examples/linpack.

3.1.8 C++ Demo

This example builds a small C++ program: .../sde/examples/cxxtest/tstring.cc is a string handling
test program from the GNU libstdc++ library. If you would like to contribute a more interesting self-contained exam-
ple, then please let us know!

3.1.9 Kit Test

This example, .../sde/examples/kittest/hello.c, is another “Hello World” program, but one which has
a real purpose: it contains code that performs a simple confidence test of your target's memory system, serial port,
“system interface” code, and library I/O functions.

If you are retargeting SDE to a new board, then you must make sure that this program runs before any other - basic
console output must work before you stand a chance with anything more complex. In particular don't try to use the
SDE remote debug stub with this example, since the debug facility uses precisely the code that you are testing here.
So if your new target-specific code doesn't work well enough to run this program and talk to a serial port, then you'll
need to debug it with an EJTAG probe, a logic analyser, or a pre-existing PROM monitor.

3.1.10 Flash Memory Test

The example program in .../sde/examples/flash/flashtest.c tests a board's Flash memory system
(programming and erasing) and demonstrates use of the facilities described in Section 6.1.4 “Flash Memory Devices
(/dev/flash)”.

Note that the Makefile defines FEATURES=flashdev to include the Flash device driver in the build, See Section
3.2 “Example Makefiles” for details.

3.1.11 PCI Bus Demo

The example program in .../sde/examples/pci/pcitest.c demonstrates how to setup, probe and access a
board's PCI bus and PCI devices using the facilities described in Section 6.1.9 “PCI Bus Support”.

3.2 Example Makefiles

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

The example enumerates all devices on the bus and displays their configuration space registers symbolically. If the
device has a boot ROM (and the target is running little-endian), then the ROM is accessed and its headers are
decoded.

3.1.12 Decompressing Boot Loader

The example program in .../sde/examples/zload/zload.c is a small decompressing boot loader which
could be used to load into RAM an application which is too big to fit into ROM. It also demonstrates use of the front-
panel display device described in Section 6.1.5 “Alpha Display (/dev/panel)”.

Note that the Makefile defines FEATURES=paneldev to include the front-panel display driver in the build (see
Section 3.2 “Example Makefiles” for details).

The Makefile will automatically compile and link a tiny program exec.c into an ELF executable file and compress
it. If you then run this example program on a simulator, or other target which support virtual host I/O, then it will read
the compressed program, decompress it, load it into memory, and call it.

3.1.13 Linux AP/RP Communication

The example program in .../sde/examples/rtlx/rtlx.c demonstrates the low-level communication
mechanism between a program running in the “Real-time Processor” of a multi-VPE MIPS CPU, communicating
with a Linux kernel device driver running on the “Application Processor”. It uses the character device files described
in Section 6.1.3 “Linux AP/RP Communication (/dev/lx#)”, which will only work in conjunction with one of the tar-
get board kits which support the mtspmon interface, namely: MALTA32LSP or MALTA32BSP.

3.1.14 Interrupt Example

The example program in .../sde/examples/spxcpt/spxcpt.c demonstrates how to install an interrupt
handler on the Malta platform. It installs an interrupt handler which updates the LED display every 0.1 seconds.

3.2 Example Makefiles

Each example sub-directory contains the source of the program and a makefile. Each makefile defines a few variables
and then includes the common file .../sde/examples/make.mk. This rather complicated makefile uses the
board-specific parameters defined in the kit directory .../sde/kit/$SBD/sbd.mk to build each program with
the correct combination of compiler flags and libraries to match the CPU type, endianness, floating point hardware,
etc. on the selected target board.

The default action of make.mk is to build three versions of your program: downloadable using ROM monitor,
downloadable but with its own I/O routines, and rommable. So for example the dhrystone benchmark makefile,
which defines.command PROG=dhry, will generate (along with a number of intermediate files) the files shown in
Table 3.1.

Table 3.1 Example Makefile Output Files

Filename Purpose

dhryram An executable file linked for downloading into RAM, and running with the
board's PROM monitor. Some monitors can load this file directly over
Ethernet.

 Example Programs

19 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

The operation of make.mk can be further controlled by setting additional variables, in one of the following ways:

1. Specify the variables on the command line, for examp[le:

$ sde-make SBD=MALTA32L APPISA="-mips32 -mips16e"
$ sde-make SBD=MSIM32R2L APPCPU=4ksd APPISA="-mips32r2 -msmartmips"
$ sde-make SBD=MSIM32R2L APPCPU=24kec APPISA="-mips32r2 -mdsp"

Note the use of quotes around the command-line values which contains spaces.

2. Edit one of the example makefiles only, so that just that one program is affected, and add lines which define the
relevant variables, for example:

SBD=MALTA32R2FL
APPCPU=4ksd
APPISA=-mips32r2 -msmartmips

Note how, in a Makefile, values with spaces do not require quotes.

3. Add the same lines to .../sde/examples/make.mk so that they will apply globally to all makefiles which
use it.

4. Set them as environment variables. For example, with Bourne shell or similar:

$ SBD=MALTA32R2FL; export SBD
$ APPCPU=4ksd; export APPCPU
$ APPISA="-mips32r2 -msmartmips"; export APPISA

or with C shell:

% setenv SBD MALTA32R2L
% setenv APPCPU 4ksd
% setenv APPISA "-mips32r2 -msmartmips"

You can have the environment variables set every time you use the software by editing a startup script.

dhryram.dl The above executable, converted into a format suitable to transfer over a
serial link to the board. The “.dl” is one of the formats supported by the
sde-conv program.

dhrysa A standalone executable file, linked for a RAM address, but once down-
loaded and started is independent of the PROM monitor (i.e. it includes its
own UART drivers, etc).

dhrysa.dl The standalone executable converted into download records, suitable for
your PROM monitor.

dhryrom A rommable executable file - it may relocate itself to RAM if required for
debugging, or if requested by the LAYOUT variable (see below).

dhryrom.s3 The rommable executable, converted into Motorola S-records ready to trans-
fer to your PROM programmer.

dhryrel For AP/RP configurations, a relocatable version of your program which can
be loaded at run-time by the operating system.

Table 3.1 Example Makefile Output Files (Continued)

Filename Purpose

3.2 Example Makefiles

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 20

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

The list of variables that you may want to change is shown in Table 3.2.

Table 3.2 User-Changeable “Make” Variables for Program Building

Variable Name Default Value Permissible Values Description

ALL rom ram sa any The default list of files to build.

APPCPU $(CPU) Override the default CPU type.

APPISA $(ISA) Override the default ISA.

ASFLAGS $(FLAGS) any Assembler flags

CFLAGS -02 -g any C compiler flags

CPPLAGS any C pre-processor flags (e.g., -D, -U, -A, etc.) to use when
compiling the application source code.

CRT0FLAGS

any Additional C pre-processor flags for customizing the
crt0.o startup module.

-DMINKIT Don't de-initialize full POSIX run-time library. See Section
4.1.3 “Minimal C Library”.

-DSMALLXPT Don't initialize early exception handling. See Section
4.1.3 “Minimal C Library”.

-DNOTORDTOR No support for constructors and destructors. See Section
4.1.3 “Minimal C Library”.

-DNOFEATUREINIT No initialization of library functions. See Section
4.1.3 “Minimal C Library”.

CXXFLAGS -02 -g any C++ compiler flags

FEATURES

A list of run-time “features”, separated by spaces, which you want to include or exclude from your applica-
tion. Wild-cards can be specified using the ‘%’ character, e.g. FEATURES=pci%. To request an feature
optionally, prepend a’/’ character, e.g. FEATURES=/paneldev. The currently supported feature list is:

all Include all optional run-time features supported on this
board. To then explicitly exclude some features, append the
feature names preceded by ‘-’, e.g. FEATURES=all -
pci%.

flashdev The /dev/flash interface. See Section 6.1.4 “Flash
Memory Devices (/dev/flash)”.

paneldev The /dev/panel interface. See Section 6.1.5 “Alpha Dis-
play (/dev/panel)”.

pci The PCI bus scanning and initialization code. This will be
included automatically if any of the PC I support functions
are called by your code.

pcilookup Lookup table to translate known PCI vendor and device IDs
to readable names. This table currently occupies 40KB and
will only grow!

unaligned Install an unaligned address exception handler to fix up occa-
sional unaligned accesses. But don't use this in production
code, it will be very slow!

xcptstackinfo Stack backtrace on fatal exception (default in ROM code
with remote debugging enabled).

 Example Programs

21 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

FLOAT

no no Floating point is not used.

yes Basic floating point support is required.

ieee Full IEEE-754 conformance (Note that this may increase
program size significantly).

LAYOUT

rom rom Copy only initialized data to RAM; run code from ROM.

romcopy, ram Copy both code and initialized data from ROM to RAM for
better performance, or to set software breakpoints. This is the
default if RDEBUG=imm is specified.

LDFLAGS any Additional linker flags.

LDSCRIPT any Custom linker script which overrides the standard one.

LDLIBS Additional local libraries on which your program is depen-
dent, and which to link with program.

LIBCC C++ I/O stream and basic class library.

LOADLIBES any Additional standard libraries to link with your program (e.g.
-lm).

NODEBUG

no no Produce source-level debugging information.

yes Do not produce source-level debugging information - unless
you add -g to CFLAGS.

OBJS any Optional list of object files which comprise the program.

PROFILE

no no Do not generate or collect profiling code or data.

yes Generate code to collect normal gprof profiling data (time in
each function and call graph).

lines Generate code to collect line-by-line gprof profiling data.

feedback-generate Generate code to collect profiling information which can be
fed back to the compiler

feedback-use Optimize the program using data collected by running a pro-
gram previously built with feedback-generate.

gcov Generate code to count branches, and the extra data required
by the gcov code-coverage program.

PROG

any Name of final executable file. See previous table. If you are
now (or may ever be) using Windows, remember to pick file
names which fit within the file extension conventions of the
Windows filesystem, and ensure your file names are still
unique after ignoring differences between upper and lower-
case letters.

RDEBUG

no no Don't include standalone remote debug stub.

yes Include remote debug stub.

inmed Include stub, and cause breakpoint before calling main().

SBD NOSBD various Target board name: see Chapter 2, “Target-specific Librar-
ies” on page 9.

SDETOP
../.. and The SDE kit and examples base directory, relative to the

example directory - but you can also specify an absolute
pathname.

Table 3.2 User-Changeable “Make” Variables for Program Building (Continued)

Variable Name Default Value Permissible Values Description

3.2 Example Makefiles

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 22

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

You should rebuild your program from scratch whenever you change any makefile parameter. You can delete the old
object files easily by running the command “sde-make clean”.

You can generate a “standalone” Makefile for any example program which is customized to your selected SBD set-
ting, which may help you to generate your own Makefile when you don't need the full multi-target flexibility of the
SDE build system. Do this by running “sde-make SDEmakefile SBD=xxx”, and then try it out by running “sde-
make -f SDEmakefile”.

Note that .../sde/examples/make.mk also includes the file .../sde/kit/rules.mk, which defines
some additional compilation rules, for example to add support for the “.sx” file extension (which identifies assem-
bler files that need to be passed through the C pre-processor, which is equivalent to gcc's handling of the “.S” exten-
sion, but compatible with Windows, which can't distinguish upper and lower-case file names).

SRCS List of source files comprising program.

UNCACHED

no no Link the program to run cached.

yes Link the program to run uncached - for tracing with a logic
analyser, for example.

Table 3.2 User-Changeable “Make” Variables for Program Building (Continued)

Variable Name Default Value Permissible Values Description

Chapter 4

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 23

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

Standard Libraries

4.1 ISO / ANSI Library

SDE’s library (libc.a and specified to the linker as -lc) follows the ISO Standard (ISO 9899:1990[1992]), also
known as ISO 90, and formerly the ANSI X3J11 committee's standard for the programming language, It has been
validated using the Plum Hall Validation Suite. The full ISO/ANSI specifications are long and careful, so this section
lists only differences from the standard as described in Appendix B of The C Programming Language by Kernighan
and Ritchie [Kern88] - yet another reason to invest in that essential volume.

Note that a number of the functions in the library assume the existence of a POSIX-like “operating system” interface,
which is not included as part of the library. The notable omissions are listed below, and one possible implementation
of them is contained in the embedded system kit, which can be used “as-is”, or modified, or even completely replaced
to suit your particular requirements.

Input and Output: <stdio.h>

All functions are supplied. However, the stdio functions in the library themselves call externally supplied low-level
POSIX file I/O primitives. If your program is running on one of the boards supported by SDE’s run-time system, then
it contains “drivers” which implement the file I/O primitives. If not, or if you don't want to use our kit, then you will
have to provide these routines yourself. They must have the standard POSIX semantics:

int open (const char *path, int flags, .../*int mode*/);
int close (int fd);
ssize_tread (int fd, void *buf, size_t n);
ssize_twrite (int fd, const void *buf, size_t n);
longlseek (int fd, long off, int whence);
int fstat (int fd, struct stat *stb);
int ioctl (int fd, unsigned long cmd, ...);

The stdio functions only support the UNIX-style line ending convention, e.g. ‘n’ is always written as a single line-
feed character. The ISO / ANSI-specified “b” mode can be given to fopen etc., and this is passed to open as the
O_BINARY flag bit. It is then up to the read and write “system calls” to do any translation that might be required.

Character Class Tests: <ctype.h>

All functions are supplied.

String Functions: <string.h>

All functions are supplied.

Mathematical Functions: <math.h>

All ANSI C floating-point functions are supplied (with additions from IEEE-754) in a separate maths library named
libm.a, and specified to the linker as -lm. This library is based on code developed at the University of California,

4.1 ISO / ANSI Library

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 24

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

Berkeley. We have assembler-coded some key functions (drem, rint and sqrt). There are two additional, non-
standard functions which accept and return single-precision floating point values, namely:

/* single-precision square root */
floatsqrtf (float);

/* single-precision absolute */
floatfabsf (float);

Utility Functions: <stdlib.h>

All functions are supplied.

The malloc family requires an external function with which to obtain sequential, contiguous blocks of memory:

void *sbrk (int nbytes);

Note that nbytes may be negative if memory is being returned to the “system” from the end of the memory pool
(although this is not used by the existing malloc). A rudimentary implementation of sbrk is supplied in our standard
run-time system.

Diagnostics: <assert.h>

Supplied.

Variable Argument Lists: <stdarg.h>

Supplied, together with the old <varargs.h> version.

Non-local Jumps: <setjmp.h>

Supplied.

Signals: <signal.h>

These functions are not implemented in the C library itself, as they are operating-system dependent. The header file is
present, and a simple implementation of the POSIX signal handling functions is provided in our standard run-time
system. See Section 6.1.6 “Signal Handling”.

Date and Time Functions: <time.h>

All functions are supplied, except for the hardware dependent clock() and time() functions, which are imple-
mented in our standard run-time system, see Section 6.1.7 “Elapsed Time Measurement”.

Implementation-defined Limits: <limits.h> and <float.h>

Supplied.

4.1.1 ISO C99 Library Support

Support in the SDE C library and associated header files for the new ISO C99 standard is by no means complete, but
the C99 <stdint.h > and <inttypes.h > header files are provided, and the printf() and scanf() family of func-
tions support the new C99 formatting codes. There are likely to be more C99 features appearing in future releases.

 Standard Libraries

25 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

4.1.2 Thread Safety

The SDE C library can be made fully thread-safe and reentrant, using the SDEthreads API to protect shared data and
manage thread local storage. This API is defined by the header file <sdethread.h>. Any RTOS wishing to use the
SDE libraries in a thread-safe manner must implement a simple glue or “shim” layer, mapping from the SDEthreads
API to its own primitives. A dummy version of the SDEthreads API, suitable for single-threaded code only, is pro-
vided in the file ...sde/kit/share/stubs.c, and can be used as a model.

MIPS Technologies offers a number of Thread Support Packages (TSPs) which integrate popular RTOS’s with SDE
- contact us for the current list.

4.1.3 Minimal C Library

If program size is critical, and you do not need access to the full-blown library facilities, then you can significantly
reduce the amount of the library that is linked into your program by avoiding the use of the high-level Input and Out-
put functions described above. To output console messages in this case you must call only the functions
_mon_putc(), _mon_puts() and _mon_printf() functions, which have identical interfaces to their stdio
equivalents, except that they talk directly to the PROM monitor or your hardware; also the _mon_printf() func-
tion does not support floating point. For console input you can use _mon_getc() to read a single character at a
time.

When your application is known to have limited requirements for its runtime environment, you can reduce the code
size further by adding the some of the following definitions to your application Makefile.

• If your application does not need de-initialization features like atexit(), and a simplified stacktrace when
unhandled exceptions occur, then use

 RT0FLAGS += -DMINKIT

• If your application doesn't use exceptions, you can avoid the inclusion of exception handlers with

 RT0FLAGS += -DSMALLX PT

Note that this disables handling of all sorts of exceptions, including those caused by hardware faults.

• If your application doesn't use constructors or destructors, you can disable their support with

LDFLAGS += -nostartfiles
RT0FLAGS += -DNO TORDTOR

Note that some third party libraries may rely on the availability of this feature.

• If you don't need any of the optional kit FEATURES, then you can disable the initialization code via

 RT0FLAGS += -DNOFEATUREINIT

4.2 IEEE-754 Floating Point Emulation Library

SDE’s floating point emulation library is named libe.a, and specified to the linker as -le. It implements single-
and double-precision IEEE-754 floating point, but using only integer instructions. It is invoked either directly by sub-
routine calls from your program (if you specify the -msoft -float compiler options), or from a trap-based FPU
instruction emulator (to fix up exceptional conditions, or when your code was built for a hardware FPU which is
absent).

4.3 Multilibs

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 26

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

There is no external documentation for this library, other than the header file <ieee754.h >.

The library includes two copies of the same code, compiled with different options:

1. A pedantic emulation of the MIPS floating point unit, which is used to implement the trap-based FPU hardware
emulation. This uses function names like ieee754dp_add.

2. A soft-float version which will be invoked by compiler-generated subroutine calls when compiled with the
-msoft-float option. This version of the library has been tuned for speed by removing support for floating
point exceptions, flag bits, and rounding modes other than “round to nearest”. These functions have names like
_adddf3.

You'll find a primer on floating point and its implementation in the MIPS architecture in [Sweet99].

4.3 Multilibs

SDE can generate code for a large range of MIPS ISAs, and variants such as endianness, register size, soft/hard float-
ing point, an so on.

In order to support this the standard libraries are supplied in many different flavors, organized into directory hierar-
chies below .../sde/lib and ...lib/gcc-lib/sde/compiler-version.

This mechanism is known as gcc multilibs, and when you link your program using the sde-gcc front-end, it automati-
cally determines the directories which contain the libraries that match the compiler architecture flags that you speci-
fied.

As long as you use sde-gcc front-end to link your program, you don't really need to know how the library directories
are organized. But if for some reason you need to use the raw linker (sde-ld), or you're just curious, then use this com-
mand:

$ sde-gcc[your options] --print-multi-directory

That will display the directory below .../sde/lib which holds the libraries which match your particular group
of options. There may be no directory for combinations of options which don't make sense. The set of options which
effect the choice of multilib are currently: -EB/-EL, -mips64/-mips32r2/-mips32, -mips16, -mhard-
float/-mfp64/-msoft-float/-mno-float, and -mno-data-in-code.

4.4 Library Source Code

Customers who purchase MIPS32® Software Toolkit receive all of the libraries as source code, as well as in pre-
compiled form. Most users will never need to recompile the libraries themselves, but the option is available in case
you need to modify a library function, or build debugging or profiling versions of the libraries.

To rebuild the libraries simply change directory to the root of the library source code, and run sde-make, like this:

$ cd .../sde/libsrc
$ sde-make

That will build the library, maths library, and floating point emulation library in sub-directories c/OBJ, math/
OBJ, and ieee/OBJ respectively. All supported multilib combinations will be built.

You can also override some of the compiler options like this:

 Standard Libraries

27 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

$ sde-make DEBUG="-O0 -g" clean all
$ sde-make DEBUG="-pg" clean all
$ sde-make DEBUG="-pg -g" clean all

In the first case you'll build a “debuggable” version of the libraries, in the second a profiling version, and in the third
case a profiling version with line-number information.

Finally you may want to install all of your newly built libraries, replacing the pre-built libraries that were supplied as
part of SDE.

$ sde-make DESTROOT=/home/joe/sde-*[relno] install

But beware: that will overwrite all of the supplied libraries, so you might want to make a copy of the original SDE
libraries first, for safe keeping, e.g.:

$ cd /home/joe/sde-*[relno]/sde
$ tar cf - lib | gzip -9 >lib-orig.tgz

4.4 Library Source Code

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 28

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

Chapter 5

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 29

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

MIPS® Architecture Intrinsics

The MIPS architecture includes a number of instructions and registers that can't be accessed directly by C and C++
code. SDE includes a set of intrinsics, which provide access to these special-purpose instructions. They are often
implemented in header files, using gcc inline asms - which means that you can read, modify and reuse them for your
own purposes.

This chapter describes only application-level MIPS intrinsics - for intrinsics which access a CPU's “system” facilities,
see Section 7.6 “System Coprocessor (CP0) Intrinsics”.

5.1 Intrinsics for Byte Swapping

Include the header file <sys/endian.h> to define the inline functions listed below. On a MIPS32 Release 2 CPU, they
will generate a fast, two-instruction sequence; on other MIPS ISAs, they will generate a longer sequence of shifts,
ands, and ors. They are also smart enough to byte-swap constants at compile time.

uint32_t htobe32(uint32_t val)

Convert the 32-bit value val from “host” byte order to big-endian byte order (this will be a no-op on a big-
endian CPU).

uint16_t htobe16(uint16_t val)

 Convert the 16-bit value val to big-endian format.

uint32_t betoh32(uint32_t val)

 Convert 32-bit big-endian value val to the “host” byte order (this will be a no-op on a big-endian CPU).

uint16_t betoh16(uint16_t val)

Convert 16-bit big-endian value val to the “host” byte order.

uint32_t htole32(uint32_t val)

uint16_t htole16(uint16_t val)

uint32_t letoh32(uint32_t val)

uint16_t letoh16(uint16_t val)

As above, but converting to and from little-endian.

5.2 Intrinsics for MIPS32® Architecture

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 30

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

5.2 Intrinsics for MIPS32® Architecture

The MIPS32 and MIPS64 instruction set architectures include the count-leading-zeroes and count-leading-ones
instructions. SDE provides this C interface, implemented by inline asms on MIPS32 and MIPS64 CPUs, or as a sub-
routine call on older MIPS architectures. To use these functions include the header file <mips/mips32.h>.

uint32_t mips_clz(uint32_t val)

The 32-bit argument val is scanned from most-significant to least-significant bit, and the number of leading
zeros is returned. If no bits were set, the value 32 is returned.

uint32_t mips_clo(uint32_t val)

The 32-bit argument val is scanned from most-significant to least-significant bit, and the number of leading
ones is returned. If all bits were set, the value 32 is returned.

uint32_t mips_dclz(uint64_t val)

The 64-bit argument val is scanned from most-significant to least-significant bit, and the number of leading
zeros is returned. If no bits were set, the value 64 is returned.

uint32_t mips_dclo(uint64_t val)

The 64-bit argument val is scanned from most-significant to least-significant bit, and the number of leading
ones is returned. If all bits were set, the value 64 is returned.

5.3 Intrinsics for MIPS32® Release 2 Architecture

The MIPS32 Release 2 ISA introduces a number of new user-level instructions. Some of them will be happily used
by the compiler to optimize normal C code. But some of the byte- and bit-shuffling instructions are not available for
normal C code, so these intrinsics are made available by including <mips/mips32.h>:

uint32_t _mips32r2_bswapw(uint32_t int val)

Byte swap the 32-bit value val, a two-instructions sequence. It is normally more efficient to use the intrinsics
described in Section 5.1 “Intrinsics for Byte Swapping”.

uint32_t _mips32r2_wsbh(uint32_t val)

Return the result of the MIPS64 Release 2 wsbh instruction given val.

uint32_t _mips32r2_ins(uint32_t tgt, uint32_t val, uint32_t pos, uint32_t sz)

Return the result of a 32-bit insert bit field instruction, inserting sz bits of val into tgt, at bit position pos.
Both pos and sz must be constants.

uint32_t _mips32r2_ext(uint32_t x, uint32_t pos, uint32_t sz)

Return the result of a 32-bit unsigned extract bit field instruction, returning sz bits, from bit position pos, of x.
Both pos and sz must be constants.

 MIPS® Architecture Intrinsics

31 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

5.4 Intrinsics for MIPS64® Release 2 Architecture

TheMIPS64 ISA inherits the MIPS32 instructions and their intrinsics, but (as one would expect) adds some 64-bit
equivalents:

uint64_t _mips64r2_bswapd(uint64_t val)

Byte swap the 64-bit value val, a two-instructions sequence.

uint64_t _mips64r2_dsbh(uint64_t val)

Return the result of the MIPS64 Release 2 dsbh instruction given val.

uint64_t _mips64r2_dshd(uint64_t val)

Return the result of the MIPS64 Release 2 dshd instruction given val.

uint64_t _mips64r2_dins(uint64_t tgt, uint64_t val, uint32_t pos, uint32_t sz)

Return the result of a 64-bit insert bit field instruction, inserting sz bits of val into tgt, at bit position pos.
Both pos and sz must be constants.

uint64_t _mips64r2_dext(uint64_t x, uint64_t pos, uint32_t sz)

Return the result of a 64-bit unsigned extract bit field instruction, returning sz bits, from bit position pos, of x.
Both pos and sz must be constants.

5.5 Intrinsics for CorExtendCoreTrade Extension

MIPS Technologies' Pro SeriesCoreTrade CPU cores include the CorExtend feature, which extends the instruction set
by adding a small number of user-definable instructions (UDIs). The Pro Series cores then provide an on-chip inter-
face which allows a customer building an SoC to add just the logic to implement their chosen instructions; the inter-
face to the CPU pipeline and its general-purpose registers is provided by the core.

The UDI instructions commonly have the standard MIPS three-operand format, where they can use two registers as
source operands and one as destination. The two source registers are decoded inside the CPU core, and sent to the
customer's UDI block, and so they can only be encoded in the standard position. The register number to which to
write the result is selected by the UDI block, so in principle can be any CPU register or none, including one of the
source registers; but it would be eccentric and unhelpful to specify a separate destination register and not use the stan-
dard MIPS format to do it. Instructions which don't use all the possible general purpose registers can recycle the reg-
ister fields for other purposes.

The assembler interface to UDI provides you with choices about how you construct the instruction:

udi IMM :

All 24 user-definable bits of the instruction are set by integer IMM, including the register and opcode fields.

udiOP IMM :

OP is an integer (0 to 15) which defines the UDI opcode, and IMM the remaining 20 user-definable bits.

5.5 Intrinsics for CorExtendCoreTrade Extension

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 32

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

udiOP rs,IMM :

OP is the UDI opcode, rs the register number (read-only, or read-write), and IMM the remaining 15 bits.

udiOP rs,rt,IMM :

rs would conventionally be read-only, but rt read-only or read-write. IMM is the remaining 10 bits.

udiOP rs,rt,rd,IMM :

rs and rt would conventionally be read-only, and rd write-only, a conventional MIPS three-operand instruc-
tion, with IMM defining the remaining 5 bits.

If a register field in a UDI instruction isn't a general purpose register, but a register in the UDI block, or extra opcode
bits, then use the $n syntax to insert a 5-bit immediate into the field, e.g. udi,$a0,$10,$v0,12.

In SDE you get an interface to the UDI instructions; you'll need to #include <mips/udi.h>.

The GNU compiler can optimize code around the asm() statements used to build this interface; and that's great. But
some UDI instructions may alter internal state or registers in the UDI block which aren't visible to the compiler, mak-
ing those optimizations incorrect. If your UDI instruction generates no state except for what it writes to the CPU des-
tination register, then you can use the “safe” intrinsics, and the optimizer can work its magic.

In the description below, OP is the UDI opcode (0 to 15); A and B are any valid C or C++ scalar integer-valued
expression, and IMM is a constant to fill the remaining instruction bits. The compiler allocates registers to hold the A
and B source operands, and the result register.

/* Simple UDI instructiions are assumed to write a result to their final CPU
register operand, but may may have other side effects such as using or modifying
internal UDI registers, so they won't be optimized by the compiler. */

/* The `ri' single register intrinsic passes A in the RS field, and returns the new
RS register. IMM is the remaining 15 bits. */
typeof A mips_udi_ri (OP, A, IMM);

/* The 'rwi' two register intrinsic passes A in the RS field, and and returns the
new RT register. IMM is the remaining 10 bits. */
typeof A mips_udi_rwi (OP, A, IMM);

/* The 'rri' two register intrinsic passes A in RS, B in RT, and and returns the
new RT register. IMM is the remaining 10 bits. */
typeof A mips_udi_rri (OP, A, B, IMM);

/* The 'rrwi' three register intrinsic passes A in RS, B in RT, and returns the w/o
RD register. IMM is the remaining 5 bits. */
typeof A mips_udi_rrwi (OP, A, B, IMM);

/* Optimizable intrinsics for UDI instructions which read only the CPU source
registers and write to the destination CPU register only, and have no other side
effects, i.e. they only use and modify the supplied CPU registers. */
typeof A mips_udi_ri_safe (OP, A, IMM);
typeof A mips_udi_rwi_safe (OP, A, IMM);
typeof A mips_udi_rri_safe (OP, A, B, IMM);
typeof A mips_udi_rrwi_safe (OP, A, B, IMM);

/* The mips_udi_i() intrinsics use no register inputs, but return the value written

 MIPS® Architecture Intrinsics

33 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

to the RS register (the input value is assumed discarded). */
uint32_t mips_udi_i (OP, IMM);
uint64_t mips_udi_i_64 (OP, IMM);

/* "NoValue" intrinsics for UDI instructions which don't write a result to a CPU
register, so presumably must have some other side effect, such as modifying an
internal UDI register. */
void mips_udi_nv (IMM);
void mips_udi_i_nv (OP, IMM);
void mips_udi_ri_nv (OP, A, IMM);
void mips_udi_rri_nv (OP, A, B, IMM);

To provide even more flexibility, the following set of intrinsics allow register fields in the UDI instructions to be set
to constant 5-bit immediates (0-31), possibly to identify registers inside the UDI block, or as extra opcode bits. The
IS, IT and ID arguments below must be constants, which will be inserted into the rs, rt and rt field of the
instruction, as appropriate. Arguments A and B will still be computed and assigned to registers by the compiler.

UDI instructions are allowed to write to any general purpose register, not just those named in the instruction - so the
destination register may be implicit in the opcode. To handle this the GPDEST argument allows the programmer to
explicitly specify the general purpose register number that is written, and this prevents the compiler from allocating
that register for other variables across the UDI instruction; if no general purpose CPU register is written, pass a GPD-
EST of zero.

/* These 4 variants of the three register operand format allow constant values to
be placed in the RS, RT fields, presumably because they name internal UDI
registers. The RD register is still allocated by the compiler. They are implicitly
"unsafe" or volatile. */
typeof A mips_udi_riri (OP, A, IT, IMM);
typeof B mips_udi_irri (OP, IS, B, IMM);
int32_t mips_udi_iiri_32 (OP, IS, IT, IMM);
int64_t mips_udi_iiri_64 (OP, IS, IT, IMM);

/* These 5 variants of the three register format allow constant values to be placed
in the RS, RT and RD fields, presumably because they name internal UDI registers.
In case the instruction writes to an implicit gp register, pass the register number
as GPDEST and the compiler will be told that it's been clobbered, and its value
will be returned - if no gp register is written, pass 0. They are all implicitly
unsafe, or volatile. */
typeof A mips_udi_rrii (OP, A, B, ID, IMM, GPDEST);
typeof A mips_udi_riii (OP, A, IT, ID, IMM, GPDEST);
typeof B mips_udi_irii (OP, IS, B, ID, IMM, GPDEST);
int32_t mips_udi_iiii_32 (OP, IS, IT, ID, IMM, GPDEST);
int64_t mips_udi_iiii_64 (OP, IS, IT, ID, IMM, GPDEST);

Warning: The compiler assumes that all asm inputs are “word sized”, i.e. that the inputs have the same precision as
the underlying register size, and it may emit instructions to sign- or zero-extend any inputs which are smaller than
that (e.g. char and short operands). To avoid an excessive number of these extension instructions you should try to
ensure that you always pass “word sized” values to these intrinsics.

Warning 2: The GCC asm statement does not allow you to use aggregate values (a struct, union or array) as inputs
or output for an asm - you may only pass simple scalar values. If you need to pass aggregate values to or from a UDI
instruction, then you must define a union to smuggle them through. For example:

/* object manipulated by UDI hardware */
typedef struct {
 uint16_t imag;

5.6 Intrinsics for COP2 Extension

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 34

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

 uint16_t real;
} complex_t;

/* access mechanism for UDI intrinsics */
typedef union {
 complex_t c;
 uint32_t w;
} udicomplex_t;

/* add two complex types using three operand UDI instruction */
extern inline complex_t do_ADD (const complex_t *a, const complex_t *b)
{

 const udicomplex_t *ua = (udicomplex_t *) a;
 const udicomplex_t *ub = (udicomplex_t *) b;
 udicomplex_t uv;
 uv.w = mips_udi_rrwi_safe (ADD _OP ODE, ua->w, ub->w, 0);
 return uv.c;
}

5.6 Intrinsics for COP2 Extension

Some MIPS Technologies CPU cores allow an SoC builder to design a tightly-coupled coprocessor which imple-
ments theCOP2 instructions. These instructions are a part of the MIPS32 and MIPS64 ISAs reserved for use only by
coprocessors. For the C interface to these instructions you must #include <mips/cop2.h>, which defines the
following intrinsics:

void mips_lwc2 (C2REG, MEM);

Load the 32-bit word in memory referenced by MEM into COP2 data register C2REG (constant 0-31). The form
of MEM is basically a 32-bit value obtained through a pointer, as in:

int *a;
mips_lwc2 (3, *a)

It's there so you can load a memory value directly into a COP2 register without loading it first into a general-pur-
pose register.

void mips_swc2 (C2DREG, MEM);

The opposite - store COP2 data register C2REG to a memory location.

void mips_ldc2 (C2DREG, MEM);

void mips_sdc2 (C2DREG, MEM);

64-bit load/store respectively. Particularly important if your CPU has only 32-bit general purpose registers.

void mips_mtc2 (VAL, C2DREG, SEL);

Write any 32-bit expression VAL to COP2 register C2DREG in register bank SEL.

uint32_t mips_mfc2 (C2DREG, SEL);

 MIPS® Architecture Intrinsics

35 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

Return the 32-bit COP2 register C2DREG/SEL.

void mips_dmtc2 (VAL, C2DREG, SEL);

uint64_t mips_dmfc2 (C2DREG, SEL);

64-bit versions of the above.

void mips_ctc2 (VAL, C2CREG);

Write any 32-bit C expression VAL to COP2 control register C2CREG.

uint32_t mips_cfc2 (C2CREG);

Return the 32-bit COP2 control register C2CREG.

void mips_cop2 (OP);

Emit arbitrary coprocessor 2 instruction with “undefined” bits set by constant integer OP.

int mips_c2t (CC);

Returns one if coprocessor 2 condition bit CC (0-7) is “true”, zero otherwise.

int mips_c2f (CC);

Returns one if coprocessor 2 condition bit CC is “false”, zero otherwise.

5.7 Intrinsics for SmartMIPS® ASE

MIPS Technologies' 4KSc and 4KSd CPU cores implement the SmartMIPS ASE (application specific extension) to
the base MIPS32 instruction set. The bit-rotate and indexed load instructions will be used automatically by the com-
piler when you use the -msmartmips compiler option. The other new instructions may be used from C code by
using the intrinsics defined by #include <mips/smartmips.h>, as follows:

int mips_multp (int a, int b)

Return the low 32-bit result of the polynomial-basis multiplication of the two, 32-bit binary polynomial argu-
ments a and b.

int mips_maddp (int acc, int a, int b)

Return the low 32-bit result of the polynomial-basis multiplication of arguments a and b, polynomially added to
acc. This can be used with mips_multp to construct a polynomial multiply-add loop which can be optimized
by the compiler. For example:

int
maddp_arr (int *arr, int narr, int factor)
{

int acc, i;
acc = mips_multp (arr[0], factor);
for (i = 1; i < narr; i++)

acc = mips_maddp (acc, arr[i], factor);

5.7 Intrinsics for SmartMIPS® ASE

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 36

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

return acc;
}

int mips_maddp2 (int a, int b)

Like mips_maddp, but assumes that you've already loaded the accumulator (the LO register) in some other way
that is not visible to the compiler.

long long mips_multpx (int a, int b)

long long mips_maddpx (long long acc, int a, int b)

long long mips_maddp2x (int a, int b)

Like mips_multp etc, but operating on the full 64-bit multiplier result, i.e. the HI, LO register pair.

int mips_mfxu (void)

Return the extra high-order bits (bits 64 and upwards) of the multiply accumulator register (the new SmartMIPS
ACX register). This is destructive of the accumulator, so use with care.

int mips_mfhu (void)

Return bits 32-63 of the multiply accumulator (the HI register). This is destructive.

int mips_mflhxu (int acc, int &lo)

Stores the low 32-bits of the multiply accumulator in acc into the lvalue “reference” argument lo, and then
shifts the multiply accumulator right by 32-bits, returning the shifted accumulator. For example:

unsigned int
mpmadd (unsigned int *arr, unsigned int *spill, int narr, int factor)
{
 unsigned int acc = 0;
 int i, j;
 for (i = j = 0; i < narr; i += 4, j++) {

acc += arr[i+0] * factor;
acc += arr[i+1] * factor;
acc += arr[i+2] * factor;
acc += arr[i+3] * factor;
acc = mips_mflhxu (acc, spill[j]);

 }
 return acc;
}

 long long mips_mflhxux (long long acc, int &lo)

Like mips_mflhxu etc, but operating on the full 64-bit multiplier result, i.e. the HI, LO register pair.

 void mips_mtlhx (int lo, int hi, int ex)

Moves the three 32-bit values in arguments lo, hi, and ex to the multiplier result registers (LO, HI and ACX).

void mips_pperm (int src, int sel)

 MIPS® Architecture Intrinsics

37 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

Shift the 96-bit (max) extended multiplier result registers 6 bits left, and mix in 6 bits of src, permuted by sel.
See the SmartMIPS pperm instruction definition for details.

5.8 Intrinsics for Paired-single/MIPS-3D® Architecture

This version of GCC includes support in the compiler for the paired-single SIMD floating point data type and instruc-
tions, and the MIPS-3D ASE. Full details of the vector data types and intrinsics can be found in the Target Builtins
section of the [Gcc] Reference Manual.

5.9 Intrinsics for MIPS MT ASE

The new instructions introduced by the MIPS MT ASE may be accessed from code using the intrinsics defined by
#include <mips/mt.h>, as follows:

unsigned int mips_mt_fork (void *addr, unsigned int pv, unsigned int cv)

Fork to addr, returning pv to parent and cv to child.

unsigned int mips_mt_yield (unsigned int yq)

Yield with qualifier yq, returning active signals.

 int mips_mt_dmt (void)

Disable MT, returning old enable state.

 int mips_mt_emt (void)

Enable MT, returning old enable state.

 int mips_mt_dvpe (void)

Disable multi-VPE mode, returning old enable state.

 int mips_mt_evpe (void)

Enable multi-VPE mode, returning old enable state.

Other functions in this header file provide access to the new Coprocessor 0 registers provided by the MT ASE, and to
registers within other thread contexts. See Section 7.6 “System Coprocessor (CP0) Intrinsics” for a listing.

5.10 Intrinsics for MIPS DSP ASE

The MIPS DSP ASE defines a set of new instructions to improve the performance of DSP and “Media” applications.

Many of these new DSP instructions operate on Q15 or Q31 fractional data. Q31 is a 32-bit fixed-point fraction
which can represent numbers between -1 and very nearly 1, and Q15 is a similar 16-bit fraction. The DSP ASE's
favorite 8-bit quantity is an unsigned fraction representing numbers between 0 and 255/256.

5.10 Intrinsics for MIPS DSP ASE

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 38

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

Vectors of 4 x unsigned bytes or 2 x Q15 fractions fit into a 32-bit register, and the DSP ASE includes instructions
which operate on all members of a vector at once. For detailed information about the MIPS DSP ASE (and a proper
description of fractional data types), see the MIPS DSP ASE documentation [MD00374].

Addition and subtraction on fractional data are really the same as addition and subtraction with unsigned integer data,
but multiplication requires a post-multiply shift to align the resulting values appropriately. The new multiply instruc-
tions in the DSP ASE that operate on fractional data provide this shift operation.

We do not (yet) have a compiler which knows about fractions. Q15 is an alias for a signed 16-bit integer (short),
and Q31 is an alias for a signed 32-bit integer (int).

This document describes some new vector data types and built-in intrinsic functions available under the GNU C com-
piler. Each instruction in the DSP ASE has its own intrinsic, so you can write anything in C.

To tell GCC to compile for a CPU with DSP ASE support, pass the compiler the -mdsp flag.

5.10.1 Vector Data Types

Some typedefs:

 typedef v4q7 __attribute__ ((mode(V4QI)));
 typedef v2q15 __attribute__ ((mode(V2HI)));
 typedef v4i8 __attribute__ ((mode(V4QI)));
 typedef v2i16 __attribute__ ((mode(V2HI)));

v2i16

a vector of two 16-bit integers.

v4i8

a vector of four 8-bit integers.

v4q7

a vector of four Q7 fractions.

v2q15

a vector of two Q15 fractions.

You can initialize vectors like this:

 v4i8 a = {1, 2, 3, 4};
 v4i8 b;
 b = (v4i8) {5, 6, 7, 8};

 v2q15 a = {0x0fcb, 0x3a75};

Caution: When the compiler lets you see inside vectors and other packed data, you see the components in the order
they occupy in memory when you store the vector. But instructions in the DSP ASE locate vector subcomponents
with reference to register bit-numbers. The relationship between bit-numbers and memory addresses changes with the
CPU's endianness; so initializers like this are endianness-dependent.

 MIPS® Architecture Intrinsics

39 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

If you're big-endian, then at the C level you'll see the high-bit-number components first - the DSP ASE refers to these
as left and uses an l (letter “l”, that is) in instruction names. If you're little-endian, then at the C level you'll see the
lower-bit-numbered components first - what the DSP ASE calls right using an r in the instruction name. When little-
endian, in fact, the one on the left is on the right: perhaps it's better to use a line break between the elements!

To initialize fractional values it's sometimes convenient to do this:

 v2q15 b;
 b = (v2q15) {0.1234 * 32768.0, 0.4567 * 32768.0};

The multiplication by 32768.0 effectively pre-shifts the decimal by 15 bits, which is just what you want for a Q15.
To initialize a Q31 variable, you need a 31-bit shift, so multiply by 2147483648.0.

You can use a union type to access vector components. Again, the relationship between the components named in
your union and those seen by the DSP ASE will be endianness-dependent.

/* 'v4i8' Example */
typedef union
{
 v4i8 a;
 char b[4];
} v4i8_union;

v4i8 i;
char j, k, l, m;
v4i8_union temp;

/* Assume we want to extract from i. */
temp.a = i;
j = temp.b[0];
k = temp.b[1];
l = temp.b[2];
m = temp.b[3];

/* Assume we want to assign j, k, l, m to i. */
temp.b[0] = j;
temp.b[1] = k;
temp.b[2] = l;
temp.b[3] = m;
i = temp.a;

/* 'v2q15' Example */
typedef union
{
 v2q15 a;
 q15 b[2];
} v2q15_union;

v2q15 i;
q15 j, k;
v2q15_union temp;

/* Assume we want to extract from i. */
temp.a = i;
j = temp.b[0];
k = temp.b[1];

/* Assume we want to assign j, k to i. */

5.10 Intrinsics for MIPS DSP ASE

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 40

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

temp.b[0] = j;
temp.b[1] = k;
i = temp.a;

5.10.2 Scalar data types

#include <stdint.h>
typedef int32_t q31;
typedef int32_t i32;
typedef uint32_t ui32;
typedef int64_t a64;

q31

is really just an alias for a 32-bit signed integer, but an argument or return value with this type reminds you that
the data is being interpreted as a Q31 fraction. Same goes for q15.

i32, ui32

are there for C purists, since there's no guarantee that a simple int is 32 bits.

a64

is an alias for long long (which for MIPS GCC is a 64-bit signed integer). We use it to remind you that the
underlying instruction is using one of the four 64-bit accumulators defined by the DSP ASE ($ac0, $ac1,
$ac2, $ac3). If you're already familiar with the MIPS architecture, note that $ac0 comprises the bits of the
hi/lo registers used in regular MIPS32 multiply/divide instructions.

Note that some parameters of builtin function have the following types:

imm0_7:

the parameter must be a constant in the range 0 to 7.

imm0_15:

the parameter must be a constant in the range 0 to 15.

imm0_31:

the parameter must be a constant in the range 0 to 31.

imm0_63:

the parameter must be a constant in the range 0 to 63.

imm0_255:

the parameter must be a constant in the range 0 to 255.

imm0_1023:

the parameter must be a constant in the range 0 to 1023.

 MIPS® Architecture Intrinsics

41 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

imm1_32:

the parameter must be a constant in the range 1 to 32.

imm_n32_31:

the parameter must be a constant in the range -32 to 31.

5.10.3 Compiler Builtin Functions

The DSP ASE instruction names are full of “.” (period) characters, not legal as part of C names. To make C names
each period is replaced by “_” (underscore), and the assembler name prefixed with “_builtin_mips_ “.

So the instruction called addq.ph becomes _builtin_mips_addq_ph. Note that where there are two variants
of an underlying DSP instruction which accept an immediate or variable/register operand, the compiler will automat-
ically pick the correct instruction depending on the type and size of the operand.

The instructions are listed in alphabetical order. Spaces have been introduced to separate unlike instructions, but
there's no other hint as to what they do.

v2q15__builtin_mips_absq_s_ph (v2q15);
q31 __builtin_mips_absq_s_w (q31);

v2q15__builtin_mips_addq_ph (v2q15, v2q15);
v2q15__builtin_mips_addq_s_ph (v2q15, v2q15);
q31 __builtin_mips_addq_s_w (q31, q31);

i32 __builtin_mips_addsc (i32, i32);
i32 __builtin_mips_addwc (i32, i32);

v4i8__builtin_mips_addu_qb (v4i8, v4i8);
v4i8__builtin_mips_addu_s_qb (v4i8, v4i8);

i32 __builtin_mips_bitrev (i32);

i32 __builtin_mips_bposge32 ();

void__builtin_mips_cmp_eq_ph (v2q15, v2q15);
void__builtin_mips_cmp_le_ph (v2q15, v2q15);
void__builtin_mips_cmp_lt_ph (v2q15, v2q15);

i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8);
i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8);
i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8);

void__builtin_mips_cmpu_eq_qb (v4i8, v4i8);
void__builtin_mips_cmpu_le_qb (v4i8, v4i8);
void__builtin_mips_cmpu_lt_qb (v4i8, v4i8);

a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15);
a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31);

a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8);
a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8);

a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15);
a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31);

5.10 Intrinsics for MIPS DSP ASE

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 42

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8);
a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8);

i32 __builtin_mips_extp (a64, i32);
i32 __builtin_mips_extpdp (a64, i32);

i32 __builtin_mips_extr_r_w (a64, i32);
i32 __builtin_mips_extr_rs_w (a64, i32);
i32 __builtin_mips_extr_s_h (a64, i32);
i32 __builtin_mips_extr_w (a64, i32);

i32 __builtin_mips_insv (i32, i32);

i32 __builtin_mips_lbux (void *, i32);
i32 __builtin_mips_lhx (void *, i32);
i32 __builtin_mips_lwx (void *, i32);

a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15);
a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15);
a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15);
a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15);

i32 __builtin_mips_modsub (i32, i32);

a64 __builtin_mips_mthlip (a64, i32);

q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15);
q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15);

v2q15__builtin_mips_muleu_s_ph_qbl (v4i8, v2q15);
v2q15__builtin_mips_muleu_s_ph_qbr (v4i8, v2q15);

v2q15__builtin_mips_mulq_rs_ph (v2q15, v2q15);

a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15);

v2q15__builtin_mips_packrl_ph (v2q15, v2q15);

v2q15__builtin_mips_pick_ph (v2q15, v2q15);
v4i8__builtin_mips_pick_qb (v4i8, v4i8);

q31 __builtin_mips_preceq_w_phl (v2q15);
q31 __builtin_mips_preceq_w_phr (v2q15);

v2q15__builtin_mips_precequ_ph_qbl (v4i8);
v2q15__builtin_mips_precequ_ph_qbla (v4i8);
v2q15__builtin_mips_precequ_ph_qbr (v4i8);
v2q15__builtin_mips_precequ_ph_qbra (v4i8);

v2q15__builtin_mips_preceu_ph_qbl (v4i8);
v2q15__builtin_mips_preceu_ph_qbla (v4i8);
v2q15__builtin_mips_preceu_ph_qbr (v4i8);
v2q15__builtin_mips_preceu_ph_qbra (v4i8);

v2q15__builtin_mips_precrq_ph_w (q31, q31);
v4i8__builtin_mips_precrq_qb_ph (v2q15, v2q15);
v2q15__builtin_mips_precrq_rs_ph_w (q31, q31);

v4i8__builtin_mips_precrqu_s_qb_ph (v2q15, v2q15);

 MIPS® Architecture Intrinsics

43 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

i32 __builtin_mips_raddu_w_qb (v4i8);

i32 __builtin_mips_rddsp (imm0_63);

v2q15__builtin_mips_repl_ph (i32);
v4i8__builtin_mips_repl_qb (i32);

a64 __builtin_mips_shilo (a64, i32);

v2q15__builtin_mips_shll_ph (v2q15, i32);
v4i8__builtin_mips_shll_qb (v4i8, i32);
v2q15__builtin_mips_shll_s_ph (v2q15, i32);
q31 __builtin_mips_shll_s_w (q31, i32);

v2q15__builtin_mips_shra_ph (v2q15, i32);
v2q15__builtin_mips_shra_r_ph (v2q15, i32);
q31 __builtin_mips_shra_r_w (q31, i32);

v4i8__builtin_mips_shrl_qb (v4i8, i32);

v2q15__builtin_mips_subq_ph (v2q15, v2q15);
v2q15__builtin_mips_subq_s_ph (v2q15, v2q15);
q31 __builtin_mips_subq_s_w (q31, q31);

v4i8__builtin_mips_subu_qb (v4i8, v4i8);
v4i8__builtin_mips_subu_s_qb (v4i8, v4i8);

void__builtin_mips_wrdsp (i32, imm0_63);

5.10.4 Compiler Builtins for Second Revision

The second revision of the DSP ASE introduces some new instructions for which there are equivalent new builtin
functions in the compiler.

v4q7 __builtin_mips_absq_s_qb (v4q7);

v2q15 __builtin_mips_addqh_ph (v2q15, v2q15);
v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15);
q31 __builtin_mips_addqh_w (q31, q31);
q31 __builtin_mips_addqh_r_w (q31, q31);

v2i16 __builtin_mips_addu_ph (v2i16, v2i16);
v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16);

v4i8 __builtin_mips_adduh_qb (v4i8, v4i8);
v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8);

i32 __builtin_mips_append (i32, i32, imm0_31);
i32 __builtin_mips_balign (i32, i32, imm0_3);

i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8);
i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8);
i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8);

a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16);
a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16);

a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15);
a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15);

5.10 Intrinsics for MIPS DSP ASE

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 44

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16);
a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16);
a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15);
a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15);

a64 __builtin_mips_madd (a64, i32, i32);
a64 __builtin_mips_maddu (a64, ui32, ui32);
a64 __builtin_mips_msub (a64, i32, i32);
a64 __builtin_mips_msubu (a64, ui32, ui32);

v2i16 __builtin_mips_mul_ph (v2i16, v2i16);
v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16);

q31 __builtin_mips_mulq_rs_w (q31, q31);
v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15);
q31 __builtin_mips_mulq_s_w (q31, q31);
a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16);

a64 __builtin_mips_mult (i32, i32);
a64 __builtin_mips_multu (ui32, ui32);

v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16);
v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31);
v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31);

i32 __builtin_mips_prepend (i32, i32, imm0_31);

v4i8 __builtin_mips_shra_qb (v4i8, i32);
v4i8 __builtin_mips_shra_r_qb (v4i8, i32);
v2i16 __builtin_mips_shrl_ph (v2i16, i32);

v2q15 __builtin_mips_subqh_ph (v2q15, v2q15);
v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15);
q31 __builtin_mips_subqh_w (q31, q31);
q31 __builtin_mips_subqh_r_w (q31, q31);

v2i16 __builtin_mips_subu_ph (v2i16, v2i16);
v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16);

v4i8 __builtin_mips_subuh_qb (v4i8, v4i8);
v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8);

5.10.5 Intrinsics for Atomic R-M-W

SDE includes a set of atomic read-modify-write operations which provide fast, protected access to shared memory
locations (but not device registers) in the face of interrupts. In the case of processors which support the ll and sc
instructions, and have the appropriate external hardware, they will also be multi-processor safe. These facilities can
be used to implement semaphores, mutexes, counters, etc.

To use these functions include the header file <mips/atomic.h>. The functions are as follows:

uint32_t mips_atomic_bis(uint32_t *wp, uint32_t bits)

The atomic bit “test-and-set” operation: sets those bits in *wp selected by non-zero bits in bits (e.g. *wp |=
set), and returns the old value of *wp.

uint32_t mips_atomic_bic(uint32_t *wp, uint32_t bits)

 MIPS® Architecture Intrinsics

45 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

The atomic bit “test-and-clear” operation: clears those bits in *wp selected by non-zero bits in bits (e.g. *wp
&= ~clr), and returns the old value of *wp.

uint32_t mips_atomic_bcs(uint32_t *wp, uint32_t clr, uint32_t set)

A combined atomic bit “test-clear-and-set” operation: clears those bits in *wp selected by non-zero bits in clr
and sets those selected by set (e.g. *wp = (*wp & ~clr) | set). Returns the old value of *wp.

uint32_t mips_atomic_swap(uint32_t *wp, uint32_t new)

The atomic “test-and-swap”, sets *wp to new, and returns the old value of *wp.

uint32_t mips_atomic_inc(uint32_t *wp)

Atomically increments *wp, returning its old value.

uint32_t mips_atomic_dec(uint32_t *wp)

Atomically decrements *wp, returning its old value.

uint32_t mips_atomic_add(uint32_t *wp, uint32_t val)

Atomically adds val to *wp, returning its old value.

uint32_t mips_atomic_cas(uint32_t *wp, uint32_t new, uint32_t cmp)

Atomic “compare-and-swap”: sets *wp to new, but only if it originally equals cmp. It returns the original value
of *wp, whether or not updated.

Note that when the CPU does not include the ll and sc instructions, the operation is simulated, and will only be
atomic if all interrupts are handled by the standard SDE exception handler, where there is special fixup code.

5.10.6 Intrinsics for Data Prefetch

Some MIPS-Based PUs support the pref instruction, which allows a programmer to optimize array processing loops
(as used in many DSP algorithms) by explicitly prefetching the next block of data into the data cache before it is
needed, to minimize the cache-miss latency of the following loads and stores. If it is done early enough, the data will
already be in the cache by the time it is needed.

SDE includes a set of prefetch intrinsics to access these instructions. On CPUs which don't support the pref instruc-
tion these will be no-ops. To use the intrinsics include the header file <mips/cpu.h>.

void mips_prefetch (void *addr, int rw, int locality)

The value of addr is the address of the memory to prefetch. There are two further arguments: rw and
locality. The value of rw is a compile-time constant one or zero; one means that the prefetch is preparing for
a write to the memory address and zero means that the prefetch is preparing for a read. The value locality
must be a compile-time constant integer between zero and three. A value of zero means that the data has no tem-
poral locality, so it need not be left in the cache after the access. A value of three means that the data has a high
degree of temporal locality and should be left in all levels of cache possible. Values of one and two mean, respec-
tively, a low or moderate degree of temporal locality. For example:

j = mips_dcache_linesize / sizeof (a[0]);

5.10 Intrinsics for MIPS DSP ASE

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 46

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

for (i = 0; i < n; i++)
{
a[i] = a[i] + b[i];
mips_prefetch (&a[i+j], 1, 1);
mips_prefetch (&b[i+j], 0, 1);
/* ... */
}

Data prefetch does not generate faults if addr is invalid, but the address expression itself must be valid. For
example, a prefetch of p->next will not fault if p->next is not a valid address, but evaluation will fault if p is
not a valid address.

Note that the mips_prefetch arguments match the _builtin_prefetch intrinsic in GCC 3.x, for which
it is an alias.

void mips_nudge (void *addr)

The MIPS-specific “nudge” (push to memory) operation. The addressed cache line is written back to memory
and invalidated.

void mips_prepare_for_store (void *addr)

The MIPS-specific “prepare for store” operation. If the addressed line is not already in the cache, then a line is
allocated for it without reading memory (possibly flushing another line from the cache), and the line is cleared to
zero. Warning: since this may zero the whole cache line, make sure that you only operate on cache line sized
chunks, with cache line alignment.

Chapter 6

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 47

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

SDE Run-time I/O System

The SDE run-time system is a library that is built from our Embedded System Kit under the control of a board-spe-
cific configuration file. This chapter discusses the programming interfaces offered by the library.

The run-time system has two quite distinct parts: a high-level POSIX-like I/O system and environment; plus a collec-
tion of low-level CPU management and control primitives. We discuss the POSIX like system in this chapter, and the
low-level CPU management in Chapter 7, “CPU Management” on page 61.

6.1 POSIX API Environment

The library, described in Section 4.1 “ISO / ANSI Library”, requires a set of low-level, UNIX-like file I/O primi-
tives. The run-time system provides this I/O system, and a signal handling mechanism, both of which conform to the
POSIX.1 definition. What are the benefits of this?

1. It is a well-documented, and well-known interface. See [POSIX88].

2. It shields the programmer from differences between various PROM monitor or simulator I/O systems. A pro-
gram can be recompiled unchanged to run on any eval board or simulator supported by SDE.

3. A program will behave identically whether it is running in RAM, under the control of a board's monitor, or stan-
dalone in ROM.

4. It makes it very easy to port simple, self-contained programs from *[unix], Linux or other POSIX-compliant
systems.

Although we refer you to [POSIX88] for documentation, the remainder of this section describes some of the details
specific to this implementation. If your host system supports the POSIX interface (which is true for modern UNIX
hosts, and the “Cygwin” environment on Windows) and you have the host's online “manual pages” available, then
you'll find that those pages describe most of the functions listed here, and those in the SDE C library.

6.1.1 Remote File I/O

The run-time system implements a read-only POSIX file-system root, which contains a number of named special
directories and devices which you can access via the standard POSIX file I/O primitives (e.g. open, close, read,
write, etc). Note that you cannot create or delete directories and files in this file system, other than as documented
below.

6.1.1.1 Host File Access

If your program is running on the GNU simulator, or you're using an MDI connection to your target via gdb (e.g. the
MIPSSim simulator), then you have access to files on your host computer:

 /host/path

6.1 POSIX API Environment

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 48

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

refers to absolute pathname path on the host computer, e.g “/host/etc/passwd” refers to file /etc/
passwd on the host.

 /cdir/path

refers to file path on the host computer, relative to the debugger or simulator's current directory, e.g. “/cdir/
Makefile” refers to file Makefile in your host's current directory.

 /tmp/path

refers to file path relative to the host's /tmp directory.

Furthermore the run-time startup code performs an initial chdir() to the /cdir directory, so a simple file
name without an initial ‘/’ will refer - as you would hope - to a file in the debugger or simulator's current direc-
tory - this is handy for benchmark programs which expect to be able read and write their data files in the current
directory.

6.1.2 Terminal I/O (/dev/tty)

The pseudo file-system also contains at least the following special device files (some boards may support more):

/dev/tty0

serial I/O port #0 - the first serial port.

/dev/tty1

serial I/O port #1 - the second serial port, if present.

/dev/console

the board's console, usually an alias for /dev/tty0.

/dev/tty

the “controlling terminal”, also usually an alias for /dev/tty0.

All of these devices support a set of ioctl operations which implement the POSIX termios interface. These control:
input line-editing, output processing, XON/XOFF flow control, baud rate control, “asynchronous” I/O notification,
blocking/non-blocking reads, etc. When running under a PROM monitor some of the hardware control ioctl oper-
ations may have no effect, if they are not accessible via the PROM monitor's API - when running standalone or rom-
mable code they will all be supported, because an SDE serial port driver will have full control of your UART.

Note that the “interrupt” character (default Ctrl-C) will raise a POSIX SIGINT signal, but the “quit” character
(default Ctrl-\e) calls the abort() function, which will drop you into the debugger.

If you use the non-POSIX O_ASYNC flag when you open the tty device (or you use the fcntl(FASYNC) function
on an open file descriptor), then the SIGIO signal will be raised when an input record is available (although note the
comments on polling above).

 SDE Run-time I/O System

49 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

6.1.3 Linux AP/RP Communication (/dev/lx#)

Programs which are built for targets which use the mtspmon “monitor” (currently MALTA32LSP, and
MALTA32BSP), have access to eight character devices named /dev/lx0-7. These provide a basic byte stream
interface between the SDE “standalone” code running on the Real-time Processor side, and the Linux device driver
running on the Application Processor side.

The rtlx example program demonstrates the use of these devices (ee Section 6.1.3 “Linux AP/RP Communication
(/dev/lx#)”). For more details on how to use this programming environment, see the Section 3.1.13 “Linux AP/RP
Communication”.

6.1.4 Flash Memory Devices (/dev/flash)

If your board kit includes support for Flash memory (see Chapter 9, “Retargeting the Toolkit” on page 89), there will
be special device files with names in the following format:

/dev/flashN

Where N is the device number, starting from 0. This file provides access to the whole of the Flash memory
device.

/dev/flashNP

Where N is the device number, and P the partition type. Each flash may be divided into a number of sub-parti-
tions, as follows:

To see whether your board kit supports and has detected Flash memory, build and run your application (see Section
3.1.3 “Command Line Monitor (minimon)”) and use the command “ls /dev”. You can also display the contents
of the Flash using “dump /dev/flash0” or similar.

To include the /dev/flash interface in your build, you must define FEATURES=flashdev or FEATURES=all
in your application Makefile (see Section 3.2 “Example Makefiles” for details). For a complete example of how to
use the interface, see the example program in Section 3.1.10 “Flash Memory Test”.

Each device can be opened, read and written using the standard POSIX file I/O functions (e.g. open, read, write,
lseek, etc.), and therefore also the buffered stdio library functions (fopen, fread, fwrite, fseek, etc.). This
means that you can develop an object file loader, for example, and debug it on a simulator reading from a host file,
and then port the code to your target system where it can load from Flash memory. Or the Flash memory might be

Table 6.1 Flash Memory Partition Types

Type Description

b Bootstrap (e.g. PROM monitor)

t Test region (e.g. power-on test scratch area)

e Non-volatile environment region

f Data region #1 (e.g. flash file system)

g Data region #2

h Data region #3

i Data region #4

6.1 POSIX API Environment

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 50

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

used as a simple “file” in which to retain configuration data or store log output, and which can be read or written
using the stdio library functions like fscanf or fprintf. A full Flash file system may be provided in future ver-
sions of SDE.

Note that although you can write to a Flash device one byte at a time, this will be very slow unless you are writing to
an erased region (contains all ones).

The Flash device driver implements the following ioctls, as defined in the header file <sys/flashio.h>:

 FLASHIOINFO

Returns the name (manufacturer and part number) of the Flash device, and its geometry, in the following struc-
ture:

struct flashinfo {
 char name[32];/* dev name */
 unsigned longbase;/* dev base (phys address) */
 unsigned intsize;/* dev size */
 unsigned longmapbase; /* memory mapped base (phys addr) */
 unsigned charunit;/* unit byte size (1,2,4,8 or 16) */
 unsigned intmaxssize; /* maximum sector size */
 unsigned intsoffs;/* base offset of specified sector */
 unsigned intssize;/* size of specified sector */
 int sprot; /* specified sector is protected */
}

A pointer to this structure is passed as the ioctl parameter. If the soffs field is set to an offset within the device,
then the returned structure will included the base offset of that sector, its size, and its protection status in the
soffs, ssize and sprot fields respectively.

Note that when multiple Flash memory devices are organized in parallel banks, then all of the size fields will be
multiplied accordingly. For example, if four byte-wide 1\|MByte devices are connected in parallel to a 32-bit
data bus, then the unit size will be 4 bytes; the sector sizes will be multiplied by 4, and the total device size will
be 4\|MBytes. If two banks are interleaved then the sizes will be doubled again.

 FLASHIOGPART

Returns the type, offset and size of this partition within the whole device, in the following structure:

struct flashpart {
 int type; /* partition type */
 unsigned intoffs;/* base of partition */
 unsigned intsize;/* size of partition */
}

The type field is one of the following values:

FLASHPART_RAW

The whole device.

 FLASHPART_BOOT

The boot partition (e.g. PROM monitor code).

 SDE Run-time I/O System

51 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

 FLASHPART_POST

Power-on self test (scratch) region.

 FLASHPART_ENV

Non-volatile environment.

 FLASHPART_FFS

Flash file system partition, free for data storage.

 FLASHPART_UNDEF

Undefined type.

FLASHIOGFLGS

Returns the current device mode which controls how the device is read and programmed. The ioctl parameter
should be a pointer to an int. The value contains the bitwise OR of the following bits:

FLASHFLGS_REBOOT

Reboot after next write.

 FLASHFLGS_NO OPY

Don't copy programming code to RAM (normally it must be copied if your application is itself executing out
of the Flash device).

 FLASHFLGS_MERGE

Merge partial sector writes with existing sector data. If this flag is not set then a partial sector write will
return an error if you write to a portion of unerased flash.

 FLASHFLGS_ ODE

Some Flash memories must be programmed differently if they contain executable code, rather than being
treated as a simple “byte stream”.

 FLASHFLGS_STREAM

The default mode treats the Flash as a simple sequential byte stream.

The default value is: FLASHFLGS_MERGE | FLASHFLGS_STREAM.

 FLASHIOSFLGS

Sets the current device mode which controls how the device is read and programmed. The ioctl parameter should
be a pointer to an int containing the bitwise OR of the flag bits described above.

 FLASHIOERASEDEV

6.1 POSIX API Environment

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 52

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

Causes the whole Flash device to be erased. The ioctl parameter is ignored. Take care not to use this if your code
is running in Flash!

 FLASHIOERASESE T

Erases one Flash device sector. The ioctl parameter should be a pointer to an unsigned int holding an offset
within the sector to be erased.

 FLASHIOGPARTS

The ioctl parameter should be a pointer to an array of FLASHNPART flashparts structures, as described in
FLASHIOGPART above. It will return the complete partition table for this device.

 FLASHIOFLUSH 6

Forces any pending partial sector writes to written to Flash. This will happen automatically when the device is
closed. The ioctl parameter is ignored.

6.1.5 Alpha Display (/dev/panel)

If your board kit includes support for an on-board or “front-panel” LED display, then there will be a special device
file with the name “/dev/panel”.

This device can be opened and written using the POSIX file I/O functions (e.g. open and write), and therefore also
the buffered stdio library functions (fopen, fprintf, etc.). Each write to the device will by default be automati-
cally preceded by an implicit seek to a fixed offset (default zero), and will thus overwrite the last message.

For an example of the use of the /dev/panel interface, see Section 3.1.12 “Decompressing Boot Loader”.

The panel device driver also implements the following ioctls, as defined in the header file <sys/panelio.h>:

 PANELIOINFO

Returns information about the display in the following structure:

struct panelinfo {
 unsigned chartype;/* display type */
 unsigned charflags;/* display facilities */
 unsigned charrows;/* number of rows or lines */
 unsigned charcols;/* number of columns per line */
}

A pointer to this structure is passed as the ioctl parameter. The type field will be one of:

PANELTYPE_ALPHA

Alphanumeric display

 PANELTYPE_HEX

Hexadecimal display

 PANELTYPE_LED

 SDE Run-time I/O System

53 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

Individual LEDs

The flags field describes the capabilities of the display, as the bitwise OR of the following flags:

PANELFLGS_BRIGHTNESS

The display has variable brightness.

 PANELFLGS_ ONTRAST

The display has variable contrast.

 PANELFLGS_BLINK

The whole display can blink on and off.

 PANELFLGS_FLASH

Individual characters or digits can blink.

 PANELFLGS_S ROLL

The display can be scrolled if the message is longer than the display (not currently supported).

 PANELFLGS_PROGRESS

The display has a bar graph or something similar, which can display the progress of a long operation.

PANELIOGMODE

Returns the current display mode in the following structure:

struct panelmode {
 unsigned charoptions;/* display options */
 unsigned charbrighton;/* brightness (0 to 100%) */
 unsigned charbrightoff;/* brightness (0 to 100%) */
 unsigned charcontrast;/* contrast (0 to 100%) */
 unsigned longblinkon;/* on period in ns */
 unsigned longblinkoff;/* off period in ns */
 unsigned longscrollrate;/* scroll rate in ns */
 int scrollchars;/* scroll amount */
}

A pointer to this structure is passed as the ioctl parameter. The options field is the bitwise OR of the following
bits:

PANELOPT_PAD 6

Pad short messages to the end of the display line with blanks.

 PANELOPT_ CENTRE

6.1 POSIX API Environment

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 54

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

 Center short messages within each display line.

 PANELOPT_WRAP

Wrap messages longer than one line onto the next line (if available), the default is to truncate the message at
the end of the line.

 PANELOPT_IGNLF

Line-feed (‘\en’) characters will not be treated specially; the default is to cause the following characters to
start on the next display line (if available).

 PANELOPT_IGNNUL

NUL characters will not be treated specially. The default is to treat them as the end of the message.

 PANELOPT_ROTATE

Messages longer than one line will continually scroll/rotate. This is not yet supported.

 PANELOPT_FADE

The display brightness will fade up and down, rather than simply flashing/blinking.

 PANELOPT_FLASH

 Characters in following writes will be flashed/faded.

PANELIOSMODE

Sets the current display mode. A pointer to the panelmode structure described above is passed as the ioctl
parameter.

 PANELIO LEAR

 Clear the display. The ioctl parameter is ignored.

 PANELIOPROGRESS

Update the panels' bar graph or similar to reflect progress through some long operation. The ioctl parameter is a
pointer to an int with a value between 0 (min) and 100 (max).

 PANELIOSCOORD

Sets the coordinate of the next output message, instead of the default <0,\|0>, from the following structure:

struct panelcoord {
 unsigned shortrow;
 unsigned shortcol;
}

A pointer to this structure is passed as the ioctl parameter. The value is sticky and will be used again on all fol-
lowing writes to the device.

 SDE Run-time I/O System

55 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

6.1.6 Signal Handling

The run-time system includes an implementation of sigaction() and associated signal handling functions
defined by [POSIX88], including sigpending(), sigprocmask(), sigsuspend() and raise(). Also
included is the non-POSIX, but time-honoured signal() function. For an example of how these can be used, see
example #3, as described in Section 3.1.3 “Command Line Monitor (minimon)”.

For direct access to the lower-level CPU exceptions and interrupts see Section 7.2.1 “C-level Exceptions”.

Table 6.2 lists of all the signals we use, with names as in the include file <signal.h>:

6.1.7 Elapsed Time Measurement

If you need to read the current time, for performance measurement or logging, then see the standard ISO / ANSI
clock() function, described in [Kern88], which returns the elapsed time in units of 1 microsecond; there is also the
time() function which returns the current “wall clock” time, in units of 1 second. The <time.h > include file defines
the following functions like this:

clock_t clock (void);
time_t time (time_t *);

Unlike a “real” POSIX operating system, the clock() function measures elapsed real time, not cpu time; in other
words it does include time spent waiting for console input/output. When measuring performance, be careful to put
calls to clock() around computational code only.

Alternatively you may prefer to use the POSIX gettimeofday() function, which returns the current “wall clock”
time in both units and fractions of a second. The <sys/time.h> include file defines the following:

Table 6.2 POSIX Signal List

Name Default Action Description

SIGINT Terminate program Interrupt program (^ from terminal)

SIGILL Terminate program Illegal instruction

SIGTRAP Terminate program Debug (breakpoint) trap

SIGABRT Terminate program Abort() call

SIGFPE Terminate program Floating point exception / integer overflow

SIGKILL Terminate program Kill program

SIGBUS Terminate program Terminate program: bus error or alignment error

SIGSEGV Terminate program Segmentation violation (invalid address)

SIGSYS Terminate program System call trap

SIGALRM Terminate program Timer expired

SIGIO Ignore signal I/O is possible on a terminal

SIGVTALRM Terminate program Virtual time alarm (see setitimer() below)

SIGPROF Terminate program Profiling timer alarm (see setitimer() below)

SIGUSR1 Terminate program User-defined signal 1

SIGUSR2 Terminate program User-defined signal 2

6.1 POSIX API Environment

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 56

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

struct timeval {
long tv_sec;/* seconds */
long tv_usec;/* and microseconds */

};

struct timezone {
int tz_minuteswest;/* ... of Greenwich */
int tz_dsttime;/* type of DST correction */

};

int gettimeofday (struct timeval *tvp, struct timezone *tzp);

You can pass a null timezone pointer, if you are not interested in that information.

6.1.8 Interval Timing

At the coarsest level, the alarm(int secs) function sets an interval timer which expires in secs seconds. A
SIGALRM signal will be delivered when it expires.

More accurate timing facilities are modelled on those originally provided by POSIX.

The <sys/time.h> include file defines the following:

#define ITIMER_REAL0
#define ITIMER_VIRTUAL1
#define ITIMER_PROF2
#define ITIMER_USER3

int
getitimer(int which, struct itimerval *value)

int
setitimer(int which, struct itimerval *value, struct itimerval *ovalue)

The system provides four separate interval timers. The getitimer() call returns the current value for the timer
specified by which in the structure at value. The setitimer() call sets a timer to the specified value (returning the
previous value of the timer if ovalue is non-nil).

A timer value is defined by the itimerval structure:

struct itimerval {
struct timeval it_interval;/* timer interval */
struct timeval it_value;/* current value */
void (*it_func)(struct timeval *, struct xcptcontext *);

};

If it_value is non-zero, it indicates the time to the next timer expiration. If it_interval is non-zero, it specifies a value
to be used in reloading it_value when the timer expires. Setting it_value to 0 disables a timer. Setting it_interval to 0
causes a timer to be disabled after its next expiration (assuming it_value is non-zero).

Note that interval timer values are rounded up to a multiple of 1 millisecond, and that timers are decremented in real
time, i.e. no account is taken of whether a program is waiting for I/O or executing useful code.

A SIGALRM signal is delivered when the ITIMER_REAL timer expires.

 SDE Run-time I/O System

57 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

A SIGVTALRM signal is delivered when the ITIMER_VIRTUAL timer expires.

A SIGUSR1 signal is delivered when the ITIMER_USER timer expires.

The ITIMER_PROF timer is used internally by the profiling system, and should not be used by applications.

The itimerval.it_func field is only valid for the ITIMER_PROF and ITIMER_USER timers. If non-null then the
specified function is called directly at interrupt time, rather than sending a signal. The first argument passed to the
function specifies the delta from the expected interrupt time (e.g. due to interrupt delays), and the second argument is
the interrupt exception context (Section 7.2.3 “C-level Interrupts”).

Three macros for manipulating time values are defined in <sys/time.h>; timerclear() sets a time value to zero;
timerisset() tests if a time value is non-zero; and timercmp() compares two time values (beware that >= and
<= do not work with this macro).

If the calls succeed, a value of 0 is returned. If an error occurs, the value -1 is returned.

For an example of how to use the asynchronous interval timing facilities, see the com_itimer() function in the
example program #3, as described in Section 3.1.3 “Command Line Monitor (minimon)”.

6.1.9 PCI Bus Support

On boards that have a PCI bus, and have implemented the necessary machine-dependent low-level support code, a
generic interface to the PCI bus is provided to handle bus initialization, enumeration and address mapping.

Below we describe these functions in detail, and an example of their use can be found in Section 3.1.11 “PCI Bus
Demo”. In all cases you will need to add the following include directives to your source file:

#include <pci/pcivar.h>
#include <pci/pcireg.h>

void _pci_init (void)

Initializes the PCI bus controller and then scans the bus for devices, allocating address space for memory and I/O
apertures and computing bus latency timers, etc; PCI-PCI bridges are also initialized and their buses scanned
recursively. If running in RAM under control of a PROM monitor (e.g. PMON or IDT/sim), then the bus config-
uration is non-destructively scanned in order to determine the existing configuration. It is rarely necessary to call
this function directly - it is called automatically at program initialization if any of the following PCI interface
functions are used.

pcitag_t _pci_find (const struct pci_match *matchp, unsigned int matchnum)

Scans the PCI bus for the matchnum'th device (starting at zero) which matches the ID and lass values in the struc-
ture pointed to be matchp:

struct pci_match {
 pcireg_tclass, classmask;
 pcireg_tid, idmask;
}

A match succeeds when:

(([O]device-class-reg & matchp->classmask) == matchp->class
 && ([O]device-id-reg & matchp->idmask == matchp->id))

6.1 POSIX API Environment

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 58

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

By using various combinations of mask value you can match all devices on the bus (mask==id==0), or all
devices of a particular class and sub-class (e.g. class==mass-storage and subclass==ide), or a
known manufacturer/device combination.

The function returns a PCI “tag” - a hardware-dependent token which represents the bus number, device number
and sub-function number of the device's configuration space registers. It is passed to other functions below to
gain access to other device registers and address spaces. When no matching devices are found, the function
returns ~(pcitag_t)0.

void _pci_break_tag (pcitag_t tag, int *busp, int *devp, int *funcp)

Converts the hardware-dependent tag into the individual bus, device and function number. If any busp, devp or
funcp are null pointers, then that value is not returned.

void _pci_tagprintf (pcitag_t tag, const char *fmt, ...)

Calls the low-level _mon_printf function to print a diagnostic message, preceded by the string “PCI bus
busno slot devno/funcno:”.

void _pci_devinfo (pcireg_t id, pcireg_t class, char *bufp, int *supp)

Returns a printable form of the manufacturer, device name and type in the buffer pointed to by bufp, keyed on a
device's ID and LASS config space registers. There is a large database of PCI devices, but it may not have yours!
The final parameter supp should always be NULL.

pcireg_t _pci_conf_read32 (pcitag_t tag, int reg)

pcireg_t _pci_conf_read16 (pcitag_t tag, int reg)

pcireg_t _pci_conf_read8 (pcitag_t tag, int reg)

Returns the 32, 16 or 8 bit register at offset reg in the config space of the device selected by tag. If a master or
target abort occurs, then the value 0xffffffff is returned, and the error is cleared.

void _pci_conf_write32 (pcitag_t tag, int reg, pcireg_t val)

void _pci_conf_write16 (pcitag_t tag, int reg, pcireg_t val)

void _pci_conf_write8 (pcitag_t tag, int reg, pcireg_t val)

Writes val to the 32, 16 or 8 bit register at offset reg in the config space of the device selected by tag.

pcireg_t _pci_statusread (void)

Returns the PCI host bridge's command/status register; this may be used to check for master or target aborts, and
other error conditions.

void _pci_statuswrite (pcireg_t stat)

Writes stat to the PCI host bridge's command/status register; used to clear latched error signals.

int _pci_map_mem (pcitag_t tag, int reg, vm_offset_t *vap, vm_offset_t *pap)

 SDE Run-time I/O System

59 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

Reads a PCI device's memory space base register (reg = 0x10 to 0x28 or 0x30) from the configuration space of
the device selected by tag, and returns a CPU virtual address which will map to that PCI aperture in *vap; the
corresponding CPU physical address is returned in *pap. Note that the physical PCI bus address stored in the
device's base register may not correspond in a simple way to the CPU physical or virtual address. Returns 0 if all
goes well, or -1if the operation fails.

int _pci_map_io (pcitag_t tag, int reg, vm_offset_t *vap, vm_offset_t *pap)

Like _pci_map_mem, but maps an I/O space base register.

int _pci_map_int (pcitag_t tag)

Returns the “interrupt number” for the device selected by tag. The value returned is zero if the device does not
have an interrupt line, and negative if there is a problem finding the corresponding interrupt number.

vm_offset_t _pci_dmamap (vm_offset_t pa, unsigned int len)

Maps the CPU physical address of a region of DRAM bounded by pa and pa+len to a PCI address, which can be
passed to a PCI bus master device for “DMA” purposes. Note that there may be no direct correspondence
between CPU and PCI addresses.

vm_offset_t _pci_cpumap (vm_offset_t pcia, unsigned int len)

Performs the reverse of the _pci_dmamap transformation, and converts a PCI memory address to a CPU phys-
ical address.

void _pci_flush (void)

Ensures that any software-visible PCI host bridge read-ahead fifos are empty.

void _pci_wbflush (void)

Ensures that any software-visible PCI host bridge write buffers are flushed to PCI.

int _pci_cacheline_log2 (void)

Returns log2()of the PCI cacheline size which should be programmed into any device which needs to know
that value.

int _pci_maxburst_log2 (void)

Returns log2() of the maximum PCI burst length supported by the PCI host bridge.

void * _isa_map_mem (vm_offset_t addr)

Some legacy PCI devices (e.g. VGA cards) start up with fixed mappings in a virtual ISA memory bus (the bot-
tom 16MB of PCI memory space). This function returns a CPU virtual address pointer which maps to address
addr within the ISA memory space.

void * _isa_map_io (unsigned int port)

Similar to _isa_map_mam() but for access to the virtual ISA I/O bus (the bottom 1MB of PCI I/O space);
returns the CPU virtual address which maps to ISA I/O port port.

6.1 POSIX API Environment

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 60

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

vm_offset_t _isa_dmamap (vm_offset_t pa, unsigned int len)

Like _pci_dmamap but for ISA DMA devices.

vm_offset_t _isa_cpumap (vm_offset_t isaa, unsigned int len)

Like _pci_cpumap but for ISA DMA devices.

Chapter 7

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 61

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

CPU Management

The second major component of the SDE run-time system consists of a set of support functions with which to initial-
ize and maintain a MIPS architecture processor's caches, TLB and coprocessor registers; together with a powerful
exception and interrupt handling mechanism, and support for remote source debugging of rommable code.

7.1 CPU Initialization

For rommable programs this code is invisible to your “application” program, as it is invoked automatically after a
hardware reset, and before calling your main() function. It is described in detail in Section 8.4.1 “CPU Reset Han-
dling”.

7.2 Exception and Interrupt Handling

SDE has sample code - MTK customers get full sources - showing how to handle exceptions and interrupts in the
MIPS architecture. The code supplied is certainly usable in a simple system.

The monitor-specific code hooks SDE’s exception handling into the PROM monitor's own exception handling mech-
anism. This allows application programs to use the interface described here, whilst other exceptions (e.g. breakpoints)
continue to be handled by the PROM monitor (e.g. the YAMON monitor).

7.2.1 C-level Exceptions

The run-time system provides a simple but powerful exception handling mechanism called xcptions, which are mod-
elled on the POSIX signal handling mechanism described inSection 6.1.6 “Signal Handling”. To use it, include the
header file <mips/xcpt.h> which defines these interfaces:

typedef int (*xcpt_t)(int, struct xcptcontext *);

struct xcptaction {
xcpt_t xa_handler;
unsignedxa_flags;/* unused */

};

/* install xcption handler */
int xcptaction (int xcptno, struct xcptaction *act,

struct xcptaction *oact);

/* install xcption handler (simple version) */
xcpt_txcption (int xcptno, xcpt_t handler);

The xcptaction()function is similar to the POSIX sigaction()function. If act is non-zero, then it specifies
a handler routine to be called when exception xcptno occurs (as defined in <mips/xcpt.h>). If oact is non-zero,
then the previous handling information for that exception is returned to the caller. The function returns zero on suc-
cess, or a non-zero error code if the parameters are faulty.

7.2 Exception and Interrupt Handling

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 62

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

Once a handler is installed, it remains installed until another xcptaction() call is made for the same exception
number. Note that the xcptaction.xa_flags field is currently ignored, but is intended to allow control over
which registers are saved and how the exception is vectored; it should be set to zero.

The xcption() function provides a simpler interface, analogous to the old UNIX signal function. It is passed a
simple function pointer, or XCPT_DFL to restore the default handler. It returns a pointer to the previous handler func-
tion, or XCPT_ERR on error.

When an exception occurs the appropriate xcption handler is called with two arguments:

1. the exception number;

2. a pointer to the xcptcontext structure which holds the processor state at the time of the exception, for example:

int handler (int xcptno, struct xcptcontext *xcp)

The xcption handler should normally return 0.

For an example showing the use of xcptions, see Section 3.1.2 “TLB Exception Handling (tlbxcpt)”.

7.2.1.1 Error Handling

As stated above, an xcption handler should normally return 0. But if it cannot handle the exception properly, or needs
to asynchronously inform the application of some event, then it can return a non-zero POSIX signal number, as
defined in Section 6.1.6 “Signal Handling”. The run-time system contains a default exception handler, which simply
translates MIPS exception numbers into the appropriate POSIX signal numbers.

The application's signal handler, if installed by sigaction() or signal(), will be called before returning to the
interrupted/failing instruction; if the signal handler then returns normally, execution will continue with the inter-
rupted instruction. If no signal handler is installed, then the application will instead be terminated with a diagnostic
message showing the cause of the exception, a register dump, and a stack trace. Note that SIGKILL cannot be caught,
so it is guaranteed to terminate the application.

If your application has been built to run on an MDI target (e.g. the MIPSSim simulator or a CPU connected by an
EJTAG probe), or it includes the SDE remote debug stub (see Section 8.4.3 “Remote Debug Stub”), then gdb will be
activated whenever any exception handler returns a non-zero result, just before it is passed to the application’s signal
handler. This lets you use gdb to analyze exceptional events. But when you are using a PROM monitor's remote
debug facilities (e.g. YAMON), then only “uncaught” exceptions will be seen by gdb: if you've installed an SDE
exception handler then that exception will not be reported to gdb, whatever its result, unless you set a breakpoint in
the exception handler itself, or in the xcpt_default function.

/* diagnostics */
voidxcpt_show (struct xcptcontext *xcp);
voidxcptstacktrace (struct xcptcontext *xcp);

An exception handler may call xcpt_show()and/or xcptstacktrace() explicitly, to display diagnostic mes-
sages without terminating the application.

Note that all interrupts are disabled during exception processing, unless they are explicitly unmasked inside your xcp-
tion or intrupt handler.

 CPU Management

63 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

7.2.2 RTOS Context Switch

RTOS developers and porters may find the following functions useful.

/* return to different xcption context */
void xcptrestore (struct xcptcontext *xcp);

/* low-level setjmp/longjmp */
int xcptsetjmp (xcptjmp_buf *xjb);
void xcptlongjmp (xcptjmp_buf *xjb, int val);

The xcptsetjmp()and xcptlongjmp() functions are analogous to the standard C library setjmp and
longjmp functions, but rather than saving and restoring the high-level POSIX signal mask, they save and restore the
MIPS Coprocessor 0 Status Register (i.e. the interrupt mask), along with the stack pointer, program counter, and the
other callee-saved registers. These functions can be used to implement a context save/restore for threads that have
voluntarily blocked (e.g. due to a locked semaphore).

The xcptrestore()function allows an explicit return to a different xcption context, i.e., not the one that you are
currently servicing. This can be used to implement a context switch to a thread that has been scheduled by an external
event (i.e. an interrupt).

Since it is unlikely that multiple threads will be using the floating point unit simultaneously, we recommend that the
floating point context switch should be lazy: enable the Status.CU1 bit only for the current FPU owner, and then
switch the FPU registers only upon receiving a Coprocessor Unusable (XCPTCPU) exception.

7.2.3 C-level Interrupts

On almost all MIPS processors there are 8 level-sensitive interrupt “inputs” (6 hardware and 2 software). If any
become active, and they are enabled by the mask bits in the CPU's Status Register, then the processor generates an
Interrupt (XCPTINTR) exception. Software must then examine the pending bits in the Cause Register to determine
which of the 8 interrupts is active, prioritize them and then vector to the relevant interrupt handler.

We provide a mechanism called intrupts to handle this: it is very similar to the xcption mechanism described above,
but with an additional interrupt prioritization scheme. Of course intrupts are just a special class of xcption, and is
defined in header file <mips/xcpt.h>.

struct intraction {
xcpt_t ia_handler;/* interrupt handler function */
int ia_arg;/* passed to interrupt handler */
unsignedia_ipl;/* priority (1-8, 0=off) */

};

/* install intrupt handler */
int intraction (unsigned int intrno, struct intraction *act,

struct intraction *old);

/* install intrupt handler (simple version) */
xcpt_tintrupt (unsigned int intrno, xcpt_t handler, int arg);

The intraction()function installs an intrupt handler, just like xcptaction() described above. The intrno
argument is a number in the range 0 to 7, specifying which interrupt-pending bit in the Cause Register this action
refers to. The intraction.ia_arg field specifies an arbitrary value to be passed to the intrupt handler, which
might be used to allow a common handler to distinguish between two distinct devices.

7.2 Exception and Interrupt Handling

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 64

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

The intrupt() function provides a simpler way to install an interrupt handler. It is like the xcption() function
described above, but its arg parameter fulfills the same task as the intraction.ia_arg field.

When an interrupt occurs the appropriate intrupt handler is called with two arguments:

1. the ia_arg parameter;

2. a pointer to the xcptcontext structure which holds the processor state at the time of the interrupt, for example:

int handler (int arg, struct xcptcontext *xcp)

Like an xcption handler, an intrupt handler should normally return 0, but can return a signal number if it wants to
send an asynchronous signal to the application. For instance a “debug button” interrupt handler could return
SIGTRAP to enter the debugger.

Some boards may multiplex several interrupts onto each CPU interrupt line, and they will require a second level
interrupt handler that uses an external interrupt request register to select the correct interrupt function.

Warning: Interrupt handlers should not expect to be able to safely change the Status Register saved in xcp->sr if
the non-interrupt code itself modifies the Status Register non-atomically (e.g. using mips_bissr(), spl(), etc).
Coprocessor register updates can never be atomic (though the MIPS32 Release 2 ISA does allow atomic changes of
the CP0 Status Register, but only to the interrupt enable (IE) bit), and there is no simple way to serialize access to the
Status Register. Contact us for advice if you need to do this.

For an example program showing the use of intrupts, see Section 3.1.14 “Interrupt Example”.

7.2.3.1 Interrupt Priorities

Remember that until very recently MIPS processors have not supported hardware interrupt prioritization, and it has
traditionally been up to software to implement whatever priority scheme it requires. Our intrupt mechanism imple-
ments a fixed-priority software-based scheme, whereby each interrupt input can be assigned to one of 8 fixed inter-
rupt priority levels (IPLs). This is not a one-to-one mapping: any number of interrupt inputs can be assigned the same
IPL, and in any combination.

The intraction.ia_ipl field, passed to the intraction()function, explicitly specifies that interrupt's IPL.
But the simpler intrupt() function uses a default IPL derived from the interrupt number as shown in Table 7.1.

Table 7.1 Interrupt Priorities

Input Cause Register IPL

h/w interrupt 5 IP7 8 <- HIGHEST

h/w interrupt 4 IP6 7

h/w interrupt 3 IP5 6

h/w interrupt 2 IP4 5

h/w interrupt 1 IP3 4

h/w interrupt 0 IP2 3

h/w interrupt 1 IP1 2

h/w interrupt 0 IP0 1

0 <- LOWEST

 CPU Management

65 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

In this model the CPU is notionally set to a priority level between 0 and 8 (inclusive): being set to a given priority
level means that all interrupts at that IPL and below are masked out, and all above are enabled. Thus if the CPU is at
priority level 0 it means that all interrupts are enabled, and if at level 8 then all are disabled. Normally your applica-
tion will be running at level 0.

When an interrupt handler is called, the CPU priority is automatically set to that interrupt's IPL for the duration of the
call to the handler. This prevents nested interrupts from the same device, or lower-priority devices, but allows them
from higher priority devices.

Device drivers and other code will sometimes need to explicitly block out some or all interrupts in critical regions.
This is done by temporarily “raising” and then “lowering” the CPU's priority level, using these functions:

unsigned int spl (unsigned int ipl);
unsigned int splx (unsigned int x);

Here spl() sets the CPU's priority level to ipl, and returns a value that can be passed later to splx(), to restore
the old priority. Note that this return value is opaque: it is not the old priority level. This leads to the following typical
usage:

{
 unsigned int s = spl (5);/* block out level 5 i/us and below */
 /* CRITICAL REGION HERE */
 (void) splx (s); /* return to previous priority level */
}

For very short critical sections only it may be faster to disable all interrupts:

{
 unsigned int s = _mips_intdisable ();
 /* CRITICAL REGION HERE */
 _mips_intrestore (s);
}

You can test for a pending interrupt while it is blocked, using

int intrpending (unsigned int intrno);

which returns 1 if the CPU h/w interrupt pending bit intrno is active.

7.2.3.2 Software interrupts

The MIPS Cause Register includes two software interrupt bits, which allow high-priority interrupt handlers to
request a new interrupt at a low-priority, or non-interrupt code to kick-start interrupt-level processing. The following
functions provide a safe way to switch these interrupts on and off:

void siron (unsigned int intrno);
void siroff (unsigned int intrno);

Note that intrno may only be 0 or 1, and the respective interrupt handlers must call siroff()to remove the inter-
rupt request before they return.

7.3 Cache Maintenance

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 66

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

7.3 Cache Maintenance

The cache management function prototypes are supplied by including <mips/cpu.h>. Many of these routines expect
to be passed an address range to operate on, consisting of a starting virtual address, and a byte count.

void mips_size_cache (void)

Size the caches, setting the following global variables:

• mips_icache_size, mips_icache_linesize, mips_icache_ways: The size (in bytes) of the primary instruction
cache; the size of each cache line, and the number of ways of set associativity.

• mips_dcache_size, mips_dcache_linesize, mips_dcache_ways: Ditto for the primary data cache.

void mips_init_cache (void)

Size the caches as above, and initialize them. The function MUST be called after a hardware reset and before
using the caches, otherwise they may be in an inconsistent state. This is normally called by the standard reset
code. Do NOT call it from application code, as it may invalidate dirty cache lines in a writeback cache, without
actually writing them back to memory.

void mips_sync_icache (vaddr_t va, size_t n)

Synchronizes the I-cache with the D-cache, which is necessary when the instruction stream is modified by soft-
ware (e.g. inserting software breakpoints, self-modifying code, etc).

void mips_clean_cache (vaddr_t va, size_t n)

Write back and invalidate entries matching the given address range from all caches. The most common routine to
call in device drivers before starting a DMA transfer, or after dynamically modifying executable code.

void mips_clean_dcache (vaddr_t va, size_t n)

Write back and invalidate entries matching the given address range from the data caches only - separate instruc-
tion caches are unchanged.

void mips_clean_icache (vaddr_t va, size_t n)

Invalidate entries matching the given address range from the instruction caches only - separate data caches are
unchanged.

void mips_flush_cache (void)

Write back and invalidate all entries from all caches. The simplest way to completely synchronize caches and
memory, but not necessarily the most efficient.

void mips_flush_dcache (void)

Write back and invalidate all entries from all data caches - separate instruction caches are unchanged.

void mips_flush_icache (void)

 CPU Management

67 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

Invalidate all entries from all instruction caches - separate data caches are unchanged.

void mips_lock_icache (vaddr_t va, size_t n)

void mips_lock_dcache (vaddr_t va, size_t n)

void mips_lock_scache (vaddr_t va, size_t n)

On CPUs which support cache locking, these functions allow you to lock regions of code or data into the primary
instruction, data or secondary caches respectively. Take care not to use the global flush functions after locking
caches, as they will invalidate (and unlock) the locked cache lines.

7.4 TLB Maintenance

The functions listed below provide for initialization and maintenance of the CPU's memory management Translation
Lookaside Buffer (TLB), if present. An example showing the use of these functions can be found in Section
3.1.2 “TLB Exception Handling (tlbxcpt)”. The TLB and memory management definitions are supplied by including
<mips/cpu.h>.

void mips_init_tlb (void)

Initializes and invalidates the whole TLB.

unsigned int mips_tlb_size (void)

Returns the number of entries in the TLB.

void mips_tlbinval (tlbhi_t hi)

Probes the TLB for an entry matching hi, and if present invalidates it.

void mips_tlbinvalall (void)

Invalidate the entire TLB.

void mips_tlbri2 (tlbhi_t *phi, tlblo_t *plo0, tlblo_t *plo1, unsigned *pmsk,
int index)

Reads the TLB entry with specified by index, and returns the EntryHi, EntryLo0, EntryLo1, and PageMask
parts in *phi, *plo0, *plo1 and *pmsk respectively.

void mips_tlbwi2 (tlbhi_t hi, tlblo_t lo0, tlblo_t lo1, unsigned msk, int
index)

Writes hi, lo0, lo1 and msk into the TLB entry specified by index.

void mips_tlbwr2 (tlbhi_t hi, tlblo_t lo0, tlblo_t lo1, unsigned msk)

Writes hi, lo0, lo1 and msk into the TLB entry specified by the Random Register.

int mips_tlbprobe2 (tlbhi_t hi, tlblo_t *plo0, tlblo_t *plo1, unsigned *pmsk)

7.5 Hardware Watchpoints

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 68

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

Probes the TLB for an entry matching hi and returns its index, or -1 if not found. If found, then the EntryLo0,
EntryLo1 and PageMask parts of the entry are also returned in *plo0, *plo1 and *pmsk respectively.

int mips_tlbrwr2 (tlbhi_t hi, tlblo_t lo0, tlblo_t lo1, unsigned msk)

Probes the TLB for an entry matching hi and if present rewrites that entry, otherwise updates a random entry. A
safe way to update the TLB.

7.5 Hardware Watchpoints

Some MIPS architecture CPUs provide one or more hardware watchpoint registers in Coprocessor 0 (these are sepa-
rate from any EJTAG hardware breakpoint registers). The watchpoint registers generate a CPU exception when soft-
ware loads or stores data, or executes instructions, within a programmable address range. Different MIPS-Based
CPUs implement very different watchpoint controls (number of watchpoints, type of access, physical/virtual address,
address masking, and so on). To make this manageable and portable between different CPUS we have developed a
generic API which is documented here. These facilities are used by the SDE remote debug stub to support gdb's
watchpoint facility; but you could also use them to implement profiling or debugging facilities within your own soft-
ware.

To use the watchpoint API described here, include the file <mips/watchpoint.h>.

int _mips_watchpoint_init (void)

Initializes the watchpoint system and returns the number of hardware watchpoints available.

int _mips_watchpoint_howmany (void)

Just returns the number of hardware watchpoints, without re-initializing the sub-system.

int _mips_watchpoint_capabilities (int wpnum)

Returns the capability of watchpoint number wpnum (0 to n). Usually called after
_mips_watchpoint_init() to collect and cache each watchpoint's capability. The capability is the bitwise
OR of some or all of the values shown in Table 7.2.

Table 7.2 Hardware Watchpoint Attributes

Watchpoint Attribute

MIPS_WATCHPOINT_SSTEP Hardware single-step supported.

MIPS_WATCHPOINT_VALUE Can qualify the watchpoint with the value of the data
being read or written from/to memory.

MIPS_WATCHPOINT_ASID Can qualify match using the virtual address-space ID
(ASID).

MIPS_WATCHPOINT_VADDR Matches against virtual address (if not set then matches
against physical address).

MIPS_WATCHPOINT_RANGE Supports an address range (arbitrarily aligned start and
end address).

MIPS_WATCHPOINT_MASK Supports an address mask (size must be a power-of-two,
and start address aligned on a matching boundary).

 CPU Management

69 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

int _mips_watchpoint_set (int type, int asid, vaddr_t va, paddr_t pa, size_t
size)

Creates a new watchpoint where: type is the OR of the last three capabilities (i.e. instruction fetch, read and/or
write); asid is the virtual address space ID (or -1 for global); va is the virtual address of the start of the watch-
point region; pa is the physical address (can be zero if virtual address matching is supported); and size is the size
of the watchpoint region.

For CPUs which support an address mask, addr and size can be arbitrarily aligned, and the code will compute the
smallest aligned region which fits around them. Beware that this could get quite loose, and cause a large number of
false watchpoint hits.

The return values, shown in Table 7.3, indicate the success or failure.

int _mips_watchpoint_clear (int type, int asid, vaddr_t va, size_t size)

Delete a watchpoint: the parameters must match those used when the watchpoint was created by
_mips_watchpoint_set(). See _mips_watchpoint_set() for the return codes.

int _mips_watchpoint_set_callback (int asid, vaddr_t va, size_t len)

MIPS_WATCHPOINT_DWORD Only supports an address match within a single 8 byte
aligned double word; if an address range/mask is sup-
ported then the minimum size and alignment is 8 bytes.

MIPS_WATCHPOINT_WORD Only supports an address match within a single 4 byte
aligned word; if an address range/mask is supported then
the minimum size and alignment is 4 bytes.

MIPS_WATCHPOINT_X Instruction fetch breakpoint supported.

MIPS_WATCHPOINT_R Data read breakpoint supported.

MIPS_WATCHPOINT_W Data write breakpoint supported.

Table 7.3 Watchpoint Return Codes

Watchpoint Return Code

MIPS_WP_OK Succeeded.

MIPS_WP_NOTSUP This type of watchpoint is not supported, or possibly you've asked
for a watchpoint region which is larger than can be supported.

MIPS_WP_INUSE All hardware resources which support this type of watchpoint are
in use.

MIPS_WP_NOMATCH Matching watchpoint cannot be found (see
_mips_watchpoint_clear()below).

MIPS_WP_OVERLAP Address range would overlap the debugger's own code, data or
stack.

MIPS_WP_BADADDR If the pa value is zero and virtual address matching is not sup-
ported.

Table 7.2 Hardware Watchpoint Attributes (Continued)

Watchpoint Attribute

7.6 System Coprocessor (CP0) Intrinsics

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 70

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

A callback function which you can (optionally) provide. When a new watchpoint is about to be added, your code
has a last chance to check the computed address range to make sure that it doesn't overlap with its own code or
data (which could cause recursive watchpoint traps). Should return MIPS_WP_OK or MIPS_WP_OVERLAP. If
you don't provide this function then all watchpoints are allowed.

int _mips_watchpoint_hit (const struct xcptcontext *xcp, vaddr_t *vap, size_t
*sizep)

Called by your hardware watchpoint exception handler (usually the debug stub) to check whether the exception
context xcp was a true watchpoint hit. If so the return value will be non-zero, and contain one of
MIPS_WATCHPOINT_R, MIPS_WATCHPOINT_W or MIPS_WATCHPOINT_X to indicate the type of
access. If in addition the bit MIPS_WATCHPOINT_INEXACT is set then this was a watchpoint exception, but
it was based on a loose address mask, and this access was outside of the range originally requested by
_mips_watchpoint_set(); your code must single-step over this instruction and then continue.

void _mips_watchpoint_remove (void)

Called by the debug stub, or your watchpoint exception handler, to disable hardware watchpoints, e.g. before sin-
gle-stepping over an instruction which may trigger the watchpoint.

void _mips_watchpoint_insert (void)

Called by the debug stub, or watchpoint exception handler, to enable hardware watchpoints, e.g. after single-
stepping over an instruction and before continuing execution.

void _mips_watchpoint_reset (void)

Clear all watchpoints.

7.6 System Coprocessor (CP0) Intrinsics

All MIPS-Based CPUs contain a “System Control” subsystem known as Coprocessor 0, or CP0. This is used by oper-
ating systems and other low-level software to control interrupts, exceptions, memory management, caches, etc. These
intrinsics provide very low-level access to the CP0 registers from C and C++ code. Other intrinsics which give access
to “user-level” instructions and registers are described in a separate chapter, see Chapter 5, “MIPS® Architecture
Intrinsics” on page 29.

The header file <mips/cpu.h> (which in turn includes the appropriate cpu-specific header), defines the intrinsics
shown in Table 7.4 and described in the following subsections. The “*” symbol represents up to five separate intrin-
sics.

Table 7.4 Register Access Intrinsics

* Arguments Operation

get () Return the register value.

set (unsigned val) Sets the register to val, and returns void.

xch (unsigned val) Sets the register to val, and returns the old register value.

bis (unsigned set) Bit set (reg ||= set): returns the old register value. Only
defined for registers with bit-fields.

bic (unsigned clr) Bit clear (reg &= ~clr): returns the old register value.
Only defined for registers with bit-fields.

 CPU Management

71 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

7.6.1 Common CP0 Registers

Some of the CP0 registers are common between almost all MIPS-Based CPU families, and the intrinsics to access
these have the common prefix mips_.

Remember though that even for the common registers, the internal bit definitions are not necessarily the same across
all CPU types. Make sure that you include the generic <mips/cpu.h>, and not <mips/m32c0.h>, or any of the CPU-
specific header files.

N.B. The intrinsics which manipulate the Coprocessor registers do not provide atomicity in the presence of interrupts
or other exceptions. This can be particularly important if you are changing the Cause or Status registers. If possible,
avoid read-modify-write operations on the Status Register: write only constant values, or stored values manipulated
only by atomic operations, unless you know that interrupts are already disabled (e.g. because you're in an exception
handler). Ensure that interrupts are disabled when you update the Cause Register.

mips_*sr

(i.e. mips_getsr, mips_setsr, mips_xchsr, mips_bissr, mips_bicsr). Operations on the Status Register (CP0 regis-
ter 12). See the atomicity warning above.

mips_*cr

Operations on the Cause Register (CP0 register 13). See warning above.

mips_getcount, mips_setcount

mips_getcompare, mips_setcompare

Operations on the Count and Compare Registers (CP0 registers 9 and 11). Available on most modern MIPS
architecture CPUs, these implement an on-chip timer.

mips_getprid

Return the read-only PrID Register (CP0 register 15). See <mips/prid.h> for a list of known values.

mips_*config

Operations on Config Register (CP0 register number varies).

mips_*ecc

Operations on ECC Register (CP0 register 26), used for cache error correction on some MIPS III + CPUs.

mips_*context

Operations on the Context Register (CP0 register 4).

bcs (unsigned clr,
unsigned set)

Bit clear and set (reg = (reg & ~\clr) | set): returns the
old register value. Only defined for registers with bit-
fields.

Table 7.4 Register Access Intrinsics (Continued)

* Arguments Operation

7.6 System Coprocessor (CP0) Intrinsics

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 72

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

mips_*pagemask

Operations on the PageMask Register (CP0 register 5).

mips_*wired

Operations on the Wired Register (CP0 register 6).

mips_*entrylo

Operations on the EntryLo Register (CP0 register 2).

mips_*entryhi

Operations on the EntryHi Register (CP0 register 10).

mips_*taglo

mips_*taghi

Operations on TagLo and TagHi registers (CP0 registers 28 and 29), used for cache testing and maintenance on
many MIPS architecture CPUs.

mips_*watchlo

mips_*watchhi

Operations on WatchLo and WatchHi registers (CP0 registers 18 and 19), used for hardware watchpoints on
many MIPS III + CPUs.

7.6.2 CP0 Registers of MIPS32®/MIPS64® Architecture

The include files <mips/m32c0.h> and <mips/m32tlb.h> define the Coprocessor registers and memory-management
unit of CPUs conforming to the MIPS32/MIPS64 specifications. They include the following functions:

mips32_*config0

Operations on the Config0 Register (CP0 register 16, select 0), also available via the generic mips_*config
functions described above.

mips32_getconfig1

Returns the Config1 Register (CP0 register 16, select 1).

mips32_getconfig2

Returns the Config2 Register (CP0 register 16, select 2).

mips32_getconfig3

Returns the Config3 Register (CP0 register 16, select 3).

mips32_getwatchlo(int sel)

 CPU Management

73 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

Return the WatchLo Register numbered sel.

mips32_setwatchlo(int sel, unsigned int val)

Set the WatchLo Register numbered sel to val.

mips32_getwatchhi(int sel)

Return the WatchHi Register numbered sel.

mips32_setwatchhi(int sel, unsigned int val)

Set the WatchHi Register numbered sel to val.

mips32_*errctl

Operations on the ErrCtl Register (CP0 register 26, select 0).

mips32_*datalo

Operations on the DataLo Register (CP0 register 28, select 1).

7.6.3 CP0 Registers of MIPS32®/MIPS64® Release 2 Architecture

The MIPS32 Release 2 ISA defines a few new Coprocessor 0 registers, also defined in include files <mips/m32c0.h>.

mips32_*pagegrain

Operations on the MIPS32 Release 2 PageGrain Register (CP0 register 5, select 1).

mips32_*hwrena

Operations on the MIPS32 Release 2 HWREna Register (CP0 register 7, select 0).

mips32_*intctl

Operations on the MIPS32 Release 2 IntCtl Register (CP0 register 12, select 1).

mips32_*srsctl

Operations on the MIPS32 Release 2 SRSCtl Register (CP0 register 12, select 2).

mips32_*srsmap

Operations on the MIPS32 Release 2 SRSMap Register (CP0 register 12, select 3).

mips32_*ebase

Operations on the MIPS32 Release 2 EBase Register (CP0 register 15, select 1).

7.6 System Coprocessor (CP0) Intrinsics

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 74

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

7.6.4 Shadow Sets of MIPS32®/MIPS64® Release 2 Architecture

The MIPS32 Release 2 architecture adds support for alternative “shadow” banks of CPU general purpose registers,
for use by low-latency interrupt and exception handlers. These intrinsics allow C code to read and write registers in
other shadow sets, and are defined in include files <mips/m32c0.h>.

uint32_t _mips32r2_xchsrspss(uint32_t set)

Sets the PSS field in the SRSCtl Register to set, allowing access to that shadow set with the following intrinsics.
Returns the old value of the PSS field.

uint32_t _mips32r2_rdpgpr(int regno)

Returns register number regno from the selected shadow set. The regno argument must be a constant between
0 and 31.

void _mips32r2_wrpgpr(int regno, uint32_t val)

Sets register number regno in the selected shadow set to val. The regno argument must be a constant
between 0 and 31.

7.6.5 CP0 Registers of MIPS® MT ASE

The include file <mips/mt.h> defines the Coprocessor registers introduced by the MT ASE, and includes the follow-
ing C access functions:

mips32_*mvpcontrol

Operations on the MVPControl Register (CP0 Register 0, Select 1).

mips32_*mvpconf0

Operations on the MVPConf0 Register (CP0 Register 0, Select 2).

mips32_*mvpconf1

Operations on the MVPConf1 Register (CP0 Register 0, Select 3).

mips32_*vpecontrol

Operations on the VPEControl Register (CP0 Register 1, Select 1).

mips32_*vpeconf0

Operations on the VPEConf0 Register (CP0 Register 1, Select 2).

mips32_*vpeconf1

Operations on the VPEConf1 Register (CP0 Register 1, Select 3).

mips32_*yqmask

 CPU Management

75 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

Operations on the YQMask Register (CP0 Register 1, Select 4).

mips32_*vpeschedule

Operations on the VPESchedule Register (CP0 Register 1, Select 5).

mips32_*vpeschefback

Operations on the VPEScheFback Register (CP0 Register 1, Select 7).

mips32_*tcstatus

Operations on the TCStatus Register (CP0 Register 4, Select 1).

mips32_*tcpc

Operations on the TCPC Register (CP0 Register 4, Select 2).

mips32_*tchalt

Operations on the TCHalt Register (CP0 Register 4, Select 3).

mips32_*tccontext

Operations on the TCContext Register (CP0 Register 4, Select 4).

mips32_*tcschedule

Operations on the TCSchedule Register (CP0 Register 4, Select 5).

mips32_*tcschefback

Operations on the TCScheFback Register (CP0 Register 4, Select 6).

mips32_*srsconf*

Operations on the SRSConf0-4 Registers (CP0 Register 6, Select 1-5)

The MT ASE also permits access to registers with a different thread context or virtual processor.

mips32_mt_settarget (int vpe, int tc)

Selects the target VPE and TC number for the following access functions.

mips32_mt_getc0status()

Return the CP0 Status Register of the selected TC/VPE.

mips32_mt_setc0status(int val)

Set the CP0 Status Register of the selected TC/VPE.

mips32_mt_getc0cause()

7.6 System Coprocessor (CP0) Intrinsics

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 76

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

Return the CP0 Cause Register of the selected TC/VPE.

mips32_mt_setc0cause(val)

Set the CP0 Cause Register of the selected TC/VPE.

mips32_mt_getc0config()

Return the CP0 Config Register of the selected TC/VPE.

mips32_mt_setc0config(val)

Set the CP0 Config Register of the selected TC/VPE.

mips32_mt_getc0config1()

Return the CP0 Config1 Register of the selected TC/VPE.

mips32_mt_setc0config1(val)

Set the CP0 Config1 Register of the selected TC/VPE.

mips32_mt_getc0ebase()

Return the CP0 EBase Register of the selected TC/VPE.

mips32_mt_setc0ebase(val)

Set the CP0 EBase Register of the selected TC/VPE.

mips32_mt_getsp()

Return the stack pointer ($29) of the selected TC/VPE.

mips32_mt_setsp(val)

Set the stack pointer ($29) of the selected TC/VPE.

mips32_mt_getgp()

Return the global pointer ($28) of the selected TC/VPE.

mips32_mt_setgp(val)

Set the global pointer ($28) of the selected TC/VPE.

mips32_mt_getvpecontrol()

Return the CP0 VPEControl Register of the selected TC/VPE.

mips32_mt_setvpecontrol(val)

Set the CP0 VPEControl Register of the selected TC/VPE.

 CPU Management

77 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

mips32_mt_getvpeconf0()

Return the CP0 VPEConf0 Register of the selected TC/VPE.

mips32_mt_setvpeconf0(val)

Set the CP0 VPEConf0 Register of the selected TC/VPE.

mips32_mt_gettcstatus()

Return the CP0 TCStatus Register of the selected TC/VPE.

mips32_mt_settcstatus(val)

Set the CP0 TCStatus Register of the selected TC/VPE.

mips32_mt_gettcbind()

Return the CP0 TCBind Register of the selected TC/VPE.

mips32_mt_settcbind(val)

Set the CP0 TCBind Register of the selected TC/VPE.

mips32_mt_gettcrestart()

Return the CP0 TCRestart Register of the selected TC/VPE.

mips32_mt_settcrestart(val)

Set the CP0 TCRestart Register of the selected TC/VPE.

mips32_mt_settchalt(val)

Set the CP0 TCHalt Register of the selected TC/VPE.

mips32_mt_gettccontext()

Return the CP0 TCContext Register of the selected TC/VPE.

mips32_mt_settccontext(val)

Set the CP0 TCContext Register of the selected TC/VPE.

7.7 Miscellaneous System Support

The following generic MIPS system support functions are defined in include file <mips/cpu.h>.

void mips_wbflush (void)

Drain the write buffer. All stores issued prior to the call are guaranteed to have been written to memory or device
by the time the function returns. It should be called between writing to device control registers and reading their

7.8 Floating Point Coprocessor (CP1)

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 78

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

status/data registers. On some CPUs it is also necessary to call it between successive writes to the same register,
to prevent word-gathering write-buffers from swallowing some of the writes.

void _mips_sync (void)

On modern MIPS-Based CPUs this generates a sync instruction. This is almost but not quite the same as
mips_wbflush() - it is a memory barrier which guarantees that all memory accesses preceding this instruc-
tion will be completed before any accesses which follow this instruction. It says nothing though about external
state, such as interrupts - and on simpler CPUs with blocking loads it may be interpreted as a no-op.

uint8_t mips_get_byte (void *addr, int *err)

uint16_t mips_get_half (void *addr, int *err)

uint32_t mips_get_word (void *addr, int *err)

uint64_t mips_get_dword (void *addr, int *err)

Return the byte, halfword, word, or dword at address addr. If the address is invalid, then *err may be set to a
non-zero value; otherwise *err is unchanged. You can use these functions when accessing arbitrary memory
locations outside of your program, to ensure that peculiarities of your system or CPU address map are handled
correctly.

int mips_put_byte (void *addr, uint8_t val)

int mips_put_half (void *addr, uint16_t val)

int mips_put_word (void *addr, uint32_t val)

int mips_put_dword (void *addr, uint64_t val)

Store a byte, halfword, word, or dword val to arbitrary address addr. If the address is invalid, then a non-zero
value may be returned, otherwise they return zero.

7.8 Floating Point Coprocessor (CP1)

The generic header file <mips/fpa.h> defines constants and functions for controlling the floating point coprocessor
(CP1) and its register set.

int fpa_enable (int fast)

Probes to see if CP1 is present. If so it is initialized, CP1 instructions are enabled, and 1 is returned. If it is not
present, then CP1 instructions are disabled, and 0 is returned. If fast is non-zero then, if possible, the FPU is set
to “performance mode” where IEEE-754 traps will not be taken for denormalized values, which will instead be
flushed or rounded.

void fpa_save (struct fpactx *ctx)

Save all the floating point data registers and coprocessor state into the structure pointed to by ctx.

void fpa_restore (const struct fpactx *ctx)

 CPU Management

79 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

Restore all the registers and coprocessor state from the structure pointed to by ctx.

unsigned fpa_getrid (void)

Returns on CP1 control register 0, the read-only floating point RevisionID Register.

fpa_*sr

Operations on CP1 control register 31, the floating point control and status register. See Section 7.6 “System
Coprocessor (CP0) Intrinsics” for a description of ‘*’.

7.8.1 Coprocessor 1 Emulation

The run-time system includes a complete MIPS coprocessor\ 1 (floating point) instruction emulator. It can emulate all
floating point instructions when there is no hardware FPU, or just those instructions with operands that the FPU can-
not handle (e.g. denormalized values, underflow, etc). The only public interface to the module is:

void_cop1_init (int emulateall);

This function installs the appropriate exception or interrupt handler: a non-zero value for emulateall installs full
emulation via the CoProcessor Unusable (XCPTCPU) exception, whilst a zero value installs only the floating point
interrupt handler (or XCPTFPE exception handler on an R4000 CPU and above). You’ll probably never need to call
it yourself - it is normally invoked automatically by the standard run-time startup code, see Section 8.1.1 “Run-time
Initialization”.

A faster alternative to trap-based coprocessor emulation is to use the compiler's -msoft-float option,

7.8 Floating Point Coprocessor (CP1)

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 80

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

Chapter 8

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 81

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

Embedded System Kit Source

This chapter introduces the source files which make up the embedded system kit. The directory ...sde/kit con-
tains a collection of source, assembler source and pre-compiled object files which fulfill two separate functions:

1. They form a run-time I/O system and environment for application programs, such as the examples. The program-
ming interface provided by this system is described in Section 6.1 “POSIX API Environment”.

2. They include a set of low-level primitives to initialize and manage a MIPS-Based CPU's caches, TLB, FPU,
exceptions, interrupts, etc.

The programming interface provided by these components is described in Chapter 7, “CPU Management” on
page 61.

The kit is set up so that you can build software, modelled on one of SDE’s example programs, and by some judicious
values for makefile variables, get the software to build successfully for any of a large number of different boards.

Unless you are using SDE lite then this is all supplied as source code, and can be adapted to other run-time environ-
ments, or perhaps just used for inspiration when porting a PROM monitor or operating system to the MIPS architec-
ture.

The kit is built around the idea that each target has its own directory of software, and its own makefile; in the target
makefile the ROM monitor (if any) and CPU type are identified, along with other options.

But first a note on the run-time I/O system.

8.1 POSIX System Interface

The run-time I/O system is modelled on the POSIX.1 specification (see [POSIX88]). It is implemented by the follow-
ing files in ...sde/kit/share; they will be either or assembler-with-cpp (.sx) files for supported SDE custom-
ers, or pre-compiled object files for other users:

• crt0: generic / C++ run-time system startup code, see below.

• env: the getenv / setenv functions, which interface to a board-specific non-volatile environment variable store if
present.

• flashenv.c and flashrom.c: support code for a simple NAME=VALUE environment store in FLASH.

• flashdev: implements the /dev/flash special device file, as described in Section 6.1.4 “Flash Memory
Devices (/dev/flash)”.

• mfs: implements a pseudo ``memory file system'' whose structure is defined by a monitor-specific file (e.g.
pmon/pmonroot.c).

8.1 POSIX System Interface

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 82

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

• nvenv: support code for a simple environment store in non-volatile RAM.

• posix: implements the generic POSIX ``file I/O'' interface functions, such as open, close, read, write, ioctl, stat,
etc. They pass control to device-specific functions defined by the device files in the ``memory file system''
above.

• paneldev: implements the /dev/panel special device file, described in Section 6.1.5 “Alpha Display (/dev/
panel)”.

• profil: contains the profiling support functions which arrange to sample the program-counter at 100Hz.

• sbrk: is the rudimentary memory allocator required by malloc() et al. It dishes out consecutive, contiguous
areas of memory between _end (the end of the program's data), and 64Kb below the stack. This hard-wired
64Kb stack size may be too small for some applications, and there is no check for the stack and memory pool col-
liding. You may need to change this limit!

• signals: is an emulation of the POSIX signal mechanism, which integrates with SDE’s low-level exception han-
dling.

• timer: is a generic interface to whatever timing hardware a board provides. It implements three high-precision
interval-timers, modelled on the BSD / SVr4 setitimer() interface. It also maintains the current ``elapsed''
time for use by time() and clock(). One of the interval-timers is also used by the pc-sampling profiler.

• tty: handles I/O to ``tty'' devices (i.e. the console), including simple line editing, baud rate setting, etc. It imple-
ments a large subset of the POSIX termios interface.

8.1.1 Run-time Initialization

The startup code in .../sde/kit/share/crt0.sx sets up the initial run-time environment required by C and
C++ programs. Its entry-point is __start, which is arrived at either by a jump from the end of the standalone
romlow code, by an eval board's PROM monitor after your code has ben downloaded to RAM, or by gdb via an
EJTAG probe or simulator. It performs the following steps:

• Initializes the gp register, required for gp-relative addressing.

• Moves the sp register to the same address space (i.e. cached KSEG0 or uncached KSEG1) as the program's data
has been linked for.

• Zeroes the “uninitialized” data section (bss).

• Initializes the POSIX I/O system and drivers, described above.

• Initializes the remote debug stub, if the RDBG symbol is non-zero. This may cause an immediate breakpoint if
RDBG is greater than 1 (which is what happens if RDEBUG=immed is used in the example makefiles).

• Initializes the floating point coprocessor and/or CP1 emulator, as selected by the #float assertion (which is con-
trolled by the FLOAT variable in the example makefiles).

• Starts the profiling timer if CFLAGS contains the -p flag.

• Runs the C++ global constructors, if any. It uses atexit() to arrange for the C++ global destructors to be
called when the program exits.

 Embedded System Kit Source

83 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

• Calls main().

• If main() returns, then it calls exit() with the returned value as its argument.

8.1.2 Run-time Termination

The crt0.sx file also contains the low-level _exit() function, which performs the following step:

• Calls the even lower-level __exit() function, defined in the monitor-specific directory. This will normally
return control to the PROM monitor or gdb, or in a rommable program might switch off the board, or enter a tight
loop.

8.2 Target-specific Code

Each target evaluation board or simulator has its own subdirectory under .../sde/kit. The list of supported tar-
gets is in Chapter 2, “Target-specific Libraries” on page 9.

Each target's directory contains a configuration file sbd.mk which describes the key features of the target, such as the
CPU type, whether it has an FPU, the monitor type, the default download, ROM and RAM addresses, etc, etc. It also
lists the files within that directory which handle board reset/initialization and devices (e.g. UART, timer, etc).

If you only want to run programs under control of an eval board's PROM monitor, then the board initialization code
and UART driver can be committed, since these functions are provided to your application by the monitor. If you do
need to retarget SDE to a new board, then see Chapter 9, “Retargeting the Toolkit” on page 89 for more details.

8.2.1 PCI Bus Configuration

The directory .../sde/kit/pci/ contains generic PCI bus configuration, enumeration and access routines,
which are included into the run-time system if sbd.mk defines PCI=yes. The functions in this directory then make
use of board-specific functions to access the PCI bus controller chip; see .../sde/kit/p6032/
pci_machdep.c for an example.

8.3 Monitor-specific Glue

Wherever possible the run-time system uses the low-level I/O facilities provided by a board's PROM monitor. It does
this to:

1. Make it easier to retarget SDE to a new board which has a supported monitor.

2. Integrate more closely with the debugging facilities of the PROM monitor, so that you can use its interactive and/
or remote debug facilities.

3. Make use of any remote console and file I/O facilities which it offers, while maintaining the standard POSIX and
ISO / ANSI “stdio” interfaces.

Like the board-support code, each supported monitor has its own sub-directory containing a configuration file
monitor.mk, together with the monitor interface code. The directories are shown in Table 8.1.

8.4 Low-level CPU Management

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 84

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

More details of the files in these directories, and how to add support for a new PROM monitor, can be found inChap-
ter 9, “Retargeting the Toolkit” on page 89.

8.4 Low-level CPU Management

The following files provide the low-level CPU initialization and control functions. In the supported, paid-for SDE
version you'll find their source code in .../sde/kit/share; other users will find that the object code is supplied
ready-built in the .../sde/kit/free directory, in a library file called SBD.lib.

• cache.sx cache_ops.sx: Interface layer to cache management functions, which can select at run-time between dif-
ferent cache architectures.

• cp1emu.c: A coprocessor 1 (floating point) instruction emulator, used when the coprocessor hardware is absent,
or to handle those instructions which the coprocessor cannot (denormalized numbers, underflow, etc).

• bremu.c: is also required; it emulates branch instructions, which is a necessary part of emulating an FP instruc-
tion if they happen to be in a branch delay slot.

• cw01cache.sx cw01cache_ops.sx: Vendor-specific cache handling for the LSI W400x/TR411x PUs.

• cw10cache.sx cw10cache_ops.sx: Vendor-specific cache handling for the LSI W401x PUs.

• cw10tlb.sx cw10tlb_ops.sx: TLB initialization and management functions for the optional LSI W401x memory
management unit.

Table 8.1 Supported PROM Monitors

Directory Description

bare A “bare-board” interface for rommable programs, or for
boards without one of the supported monitors. In this case,
software from SDE takes over the board devices and
exceptions completely.

yamon Interface to the YAMON monitor used on MIPS Technol-
ogies' development boards.

mdimon Provides facilities (including virtual console and host file
I/O) for programs running on targets connected to gdb via
the “MDI” interface.

mtspmon Provides facilities for SDE programs running on the Real-
time Processor side of a multi-threaded CPU, communi-
cating with a Linux device driver on the Application
Processor.

gnusim Provides host file I/O for programs running on the GNU
simulator included with SDE.

idtsim Interface to the IDT/sim monitor used on boards supplied
by IDT Inc.

pmon Interface to the public-domain LSI PMON monitor, used
on boards supplied by LSI Logic Inc. and other vendors.

 Embedded System Kit Source

85 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

• dbg.c: The remote debug stub, used when debugging standalone, rommable programs, or when a board's PROM
monitor does not implement the “MIPS remote” debugging protocol. See Section 8.4.3 “Remote Debug Stub”
below.

• dbgsig.c: Dummy h/w interrupt initialization for remote debug stub; this can be overridden.

• dbgsup.c: Default I/O support routines for remote debug stub.

• ecchandler.c: Example cache/ecc error handler for R4000 S /M processors.

• fcache.c: Generic Flash ROM interface for the remote debug stub, allowing breakpoints to be set in Flash.

• intrupt.c: Generic, prioritisable interrupt dispatcher.

• lr30cache.sx lr30cache_ops.sx: Cache initialization and management for the LSI LR330x0 families.

• m32cache.sx m32cache_ops.sx: Cache support for the MIPS32 and MIPS64 architectures.

• m32c1.sx: Coprocessor 0 support for the MIPS32 and MIPS64 architectures.

• m32tlb.sx m32tlb_ops.sx: TLB initialization and management functions for the MIPS32 and MIPS64 architec-
tures.

• micromon.sx: An ultra low-level, RAM-less ROM monitor program, which can be very useful when bringing up
a new MIPS-Based design.

• mipscp0.sx: Low-level access to the coprocessor 0 registers, provided mainly for *[mips16] code which cannot
use inline asm statements to access these registers.

• muldivem.c: A software multiply and divide instruction emulator for CPU cores that don't have the hardware
multiplier unit.

• noc1.sx: Dummy floating point coprocessor functions for PUs without an FPU.

• notlb.sx notlb_ops.sx: Dummy TLB functions for PUs without a TLB.

• r3kcache.sx, r3kcache_ops.sx, r4kcache.sx, r4kcache_ops.sx, r5kcache.sx, r5kcache_ops.sx: Cache initialization
and management functions for the generic R3000, R4000 and R5000 families.

• r54cache.sx r54cache_ops.sx: Vendor-specific cache handling for the NE R54xx family.

• rc32cache.sx rc32cache_ops.sx: Vendor-specific cache handling for the IDT R 32364.

• rm7kcache.sx rm7kcache_ops.sx: Vendor-specific cache handling for the PM -Sierra RM7000.

• r3kc1.sx, r4kc1.sx, r5kc1.sx: Floating point coprocessor (CP1) initialization, register save/restore and control
functions for the R3000, R4000 and R5000 families.

• r3ktlb.sx, r3ktlb_ops.sx, r4ktlb.sx, r4ktlb_ops.sx: TLB initialization and management functions for R3000-class
and R4000-class memory management hardware.

8.4 Low-level CPU Management

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 86

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

• romlow.sx: The ``from reset'' initialization code, and boot exception handler. With the co-operation of board-spe-
cific functions, this receives a rommable program to the point where the normal run-time environment can be
started. See Section 8.4.1 “CPU Reset Handling” below.

• unaligned.c: Unaligned-access exception handler and emulator.

• watch.c: Generic API to the CPU hardware watchpoint facilities, if available.

• watchsup.c: Support code for CPU hardware watchpoint facilities.

• xcptlowb.sx: Low-level MIPS exception handler.

• xcptlow.sx: Alternative low-level exception handler, for more complex environments.

• xcptcache.s: Example low-level R4000 “cache error” exception handler (see also ecchandler.c).

• xcpt.c: Higher-level exception support code, including default exception handler.

• xcptshow.c: Functions to report an exception status on the console.

• xcptshowmin.c: Functions to report an exception status on the console, small version.

8.4.1 CPU Reset Handling

The source file ... sde/kit/share/romlow.sx is used only when building a standalone, rommable program,
and is compiled into a board-specific object file. Unsupported users receive it in a pre-compiled object file in the
board directories.

It is always linked at the beginning of the ROM, and this should be the virtual address where the CPU starts execution
on a hardware reset - that is 0xbfc00000, or 0xffffffffbfc00000 on a 64-bit processor, which map to physical address
0x1fc00000.

It includes the following:

• A template showing one way to provide a monitor entry point table, should such a thing be required.

• The assembler code required to get a MIPS architecture CPU from a reset exception to the point of initializing
the C/ C++ run-time environment. Part of this is target-dependent, and is accomplished by calling the board-
dependent _sbd_reset function, which is defined in the target-specific directory.

• The code to copy the instruction and read-only data segment from ROM to RAM. This copy is done only if
the.text section has not been linked to start at the base of the ROM, and that is usually done only if you want to be
able to set breakpoints in, and single-step through standalone programs.

• The code to copy the initialized, writeable data section from ROM to RAM. The sde-conv program, when given
the -p option, concatenates the initialized data segment to the end of the instruction and read-only data segment.

• The code to re-vector Boot Exception Vector (BEV) exceptions to the address held in kernel reserved register k0
($26). Boot exceptions are used before RAM and caches have been tested and enabled (in normal operation the
CPU vectors via cached RAM space, i.e. a low KSEG0 address). If k0\|==\|zero, then it attempts to display a
“catastrophic Exception” message on the system console, indicating the location and cause of the error.

 Embedded System Kit Source

87 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

The file .../sde/kit/share/ramlow.sx is simply a dummy version of the romlow.sx file, which is used
when building programs to be downloaded to RAM on a target with an existing monitor.

8.4.2 Exception Handlers

The files .../sde/kit/share/xcptlowb.sx and xcptlow.sx implement two alternative forms of the
lowest level of exception handling for MIPS processors. Their job is to save the current processor state in a stack
frame known as an xcptcontext (defined by <mips/xcpt.h>), set up a fresh run-time environment, and then call a C
function. When the C function returns, they restore the saved processor state and return to the interrupted program.
Note that these low-level handlers neither save nor restore the floating point registers: your exception handling rou-
tines must explicitly call fpa_save() and fpa_restore() if they need to use, examine or modify any floating
point registers. We recommend that exception level code should not perform floating point arithmetic!

The simplest and fastest handler is the default xcptlowb.sx. This handler remains on the current “application”
stack, pushes a new xcptcontext frame, and then calls a standard handler which does further dispatching to individual
exception handlers (see xcpt.c, described below).

More complex run-time environments may need to use the xcptlow.sx handler, or some hand-crafted combina-
tion of the two. The xcptlow.sx file implements a separate exception-level stack, which is necessary if the stack
pointer might not be valid on an exception (e.g. it may point to an unmapped address in KUSEG or KSEG2). Addi-
tionally the code uses a low-level dispatch table (xcpt_astab) which could allow certain exceptions to be handled
quickly in assembler, without the overhead of saving/restoring a complete exception context (e.g. low-latency inter-
rupt handling).

The higher-level exception handler is in file.../sde/kit/share/xcpt.c, and its associated header file is
<mips/xcpt.h>.

8.4.3 Remote Debug Stub

When EJTAG is not available, remote debugging requires that the target board runs some sort of communications
protocol which allows sde-gdb on the host development system to control and examine the program running on the
target. This usually operates over a serial line, or perhaps over Ethernet.

When a program is being run under the control of a board's PROM monitor, and that monitor implements a supported
remote debug protocol (which is true for the YAMON monitor, IDT/sim and LSI PMON), then you will probably use
the PROM monitor's built-in remote debug support.

But if the program is running standalone (i.e. there's no separate monitor), or if your PROM monitor does not run a
gdb debug protocol, then your program must have the remote debugging protocol code linked into it. This is imple-
mented by the remote debug stub in dbg.o; if you have source code it will be in .../sde/kit/share/dbg.c.

If you use the example makefiles and their standard startup code then the debug stub will be automatically linked into
your program, and initialized when both:

1. You are building a rommable version of the program, or the selected monitor does not implement a supported
gdb remote debug protocol, and

2. The BRDEBUG makefile variable is defined as “yes”or “immed”. See Section 3.2 “Example Makefiles”.

Once the debug stub has been initialized, it will then only take control if an unexpected CPU exception occurs. How-
ever if RDEBUG=immed was defined, then an immediate breakpoint is taken before your main program is started, to
allow initial breakpoints to be set.

8.4 Low-level CPU Management

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 88

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

8.4.3.1 Hardware-specific Debug Support

The remote debug stub contains some support for catching hardware interrupts, e.g. a debug button, or a control- C
(ASCII 0x03) received on the debug serial port. See the _dbg_signals()function in .../sde/kit/P4000B/
sbddbg.c for an example of how to do this.

To support debugging of code in Flash memory, the debug stub performs all accesses to memory via a set of cover
functions. See _dbg_put_byte() et al in .../sde/kit/p4032/sbddbg.c.

You can also use the DSIMULATESSTEP compile-time option to avoid having to rewrite a whole Flash sector on
every single-step (see .../sde/kit/share/dbg.c for its effect).

It is also possible to integrate the debug stub with your own (perhaps interrupt driven) I/O system, by implementing
your own version of the functions found in .../sde/kit/share/dbgsup.c.

8.4.3.2 Multi-threading Support

The remote debug stub does contain some support for debugging multiple threads/processes. See the dummy func-
tions at the start of .../sde/kit/share/dbg.c. Contact us if you need to use this feature. These stubs can be
overridden by a multi-threading kernel to provide thread debugging.

Chapter 9

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 89

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

Retargeting the Toolkit

This section is a guide to retargeting or porting SDE to a new target board or simulator, and how to check your port
with the example programs. While there's nothing to stop you doing this starting from SDE lite, one reason for sup-
plying the run-time source code with the supported version of SDE is to help you to get your application up and run-
ning on a new MIPS-Based design with the minimum of extra programming. This section assumes you have all the
files; unsupported users will have to figure things out for themselves.

To add support for a new board you should:

1. Create a new directory in .../sde/kit with the name of your board (e.g. MYBOARD).

2. Copy into this directory all the files from the board directory .../sde/kit/SKEL.

3. Edit each of these files, as described by the detailed comments within them, to control your on-board devices.

In many cases you may be able to use existing, shared files for UARTS, timers, etc, which are already used on other
boards. There are many different boards and chipsets already supported: it is worth scanning other board support
directories for sample code or simply for inspiration. The files which you will need to create are shown in Table 9.1.

Table 9.1 Board-specific Files

File Description

Makefile Trivial file which defines the board name and includes
../kit.mk.

sbd.mk Configuration file which describes the CPU type, endian-
ness, presence of FPU, names of object files, memory
map, etc.

sbd.h Header file defining board-specific devices and registers,
memory map, etc.

sbdclock.c The low-level code to control the on-board timer. Most
modern MIPS-Based CPUs (since the R4000 CPU) have
an onchip counter and can use the common r4kclock.c
driver; some other boards have drivers for offchip timers

sbdflashenv.c Support functions for storing board environment variables
in Flash memory (if available).

sbdfreq.c The low-level code to determine the CPU clock fre-
quency. This is only strictly needed when using an on-chip
timer, where sbdclock.c needs to know this value.

sbdfrom.c Support code for Flash memory programming: recognizes
Flash memory address region and probes for Flash device.

sbdfrom.h Defines the layout and type of Flash memory device(s).

sbdmem.c Describes the physical RAM layout for memory alloca-
tion; only required if it is not contiguous.

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 90

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

Fortunately, if you already have a supported PROM monitor running on the board (e.g. the YAMON monitor, PMON
or IDT/sim), or are running on a supported simulator, then many of these files can be dummied out; the monitor/sim-
ulator handles the power-on initialization and console I/O for you. The only board-specific files that require real code
are sbdclock.c, and possibly sbdfreq.c, which are required to implement the interval timing functions (which
you will need for benchmarking and profiling).

When performing a full port, then in order to support rommable code, particular care must be taken in the
sbdreset.sx and sbdser.sx files. Until the generic code in .../sde/kit/share/romlow.sx has com-
pleted its job, then memory may not be used to store variables or a stack (it may not be enabled yet, and/or may have
to be cleared to initialize parity, etc). The caches and FPU will also not be initialized yet, and cannot be used. The
board-reset and low-level serial I/O code must therefore be capable of operating only in registers. Also tricky is that
these functions (and anything which they call) must be position-independent because, until they are relocated, they
may not at first be running at their final link address: absolute jumps may not be used, only branches and bal for sub-
routine calls. If you have to load the address of a code label or read-only data label, then you must add register s8
which holds the relocation factor, e.g.

la a0,reset_tab
addua0,s8
lw t0,0(a0)

Having created the new files and got them to compile, you can test them with some of the example programs:

• Micromon: built automatically as part of the board-support kit, it can be used test the reset and serial I/O code
even before a new board's memory controller is working. The ultra low-level monitor interprets a ``reverse pol-
ish'' stack-based command language allowing you to probe devices and memory - press ‘?’ for help.

• Kittest: should be used to check that the low-level serial I/O code as part of the full C environment.

• Minimon: the mini command-line monitor has a number of builtin commands which can be used to check out
many of the remaining functions, as follows:

sbdmisc.sx Miscellaneous low-level functions like
mips_wbflush().

sbdnvram.c Support functions for storing board environment variables
in non-volatile memory (if any).

sbdpanel.c Low-level code to display simple messages on on-board or
front-panel LED alphanumeric display.

sbdpci.c Support functions for initialization of host PCI bus con-
troller (if any) and configuration of PCI devices.

sbdreset.sx The code to initialize the on-board memory controller and
any other board-specific reset code. This is only necessary
if you intend to build standalone (i.e. rommable) pro-
grams.

sbdser.sx A simple driver for the board's UART. Again this is usu-
ally only necessary for standalone programs; other pro-
grams will use the PROM monitor's I/O routines.

sbdtime.c For boards that have a battery-backed real-time clock this
file computes the current time in seconds since 00:00:00
Jan. 1, 1970.

Table 9.1 Board-specific Files (Continued)

File Description

 Retargeting the Toolkit

91 MIPS® SDE 6.x Programmer’s Guide, Revision 01.18

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

cache: should report the correct cache sizes.

stat: should display the correct memory size and CPU frequency.

time: should display the correct date and time, if you have a real-time clock chip.

itimer: checks that the timer support code is returning monotonically increasing values, and
interrupting at the correct rate; it should run for exactly 120 seconds (check it with a
stopwatch).

ls /dev: Directory listing should include “flash0” etc. if you have implemented Flash memory
support; and “panel” if you have implemented front-panel display support.

echo wow! /dev/panel: Should display ``wow!'' on your front-panel display, if implemented.

dump /dev/flash0 0 16: Should dump the first 16 bytes of your Flash memory, if detected.

• Flash: the Flash memory test/example should report each of your Flash memory devices, and run through to
completion without any errors, if you have implemented Flash memory support correctly.

• PCI: the PCI test/example should enumerate and list all devices on your PCI bus, if you have implemented the
PCI support code correctly.

9.1 Common Device Files

There are a number of files in .../sde/kit/share which provide support for common UART and timer chips.
You may be able to use these directly for your board, by #include-ing them into your files, or simply use them for
inspiration:

• m82510.s: driver for the Intel M82510 serial controller.

• mk48t02.c: support for the Mostek MK48T02 clock/calendar.

• mpsc.s: driver for the NEC uPD72001 serial controller.

• ns16550.s: driver for the NS16450/16550 UART.

• r361clk.c: interval timing support for the IDT R36100 on-chip timer.

• r4kclock.c: interval timing support for the on-chip timer found on most modern MIPS-Based CPUs; relies on the
on-chip timer interrupt being enabled by your hardware engineer.

• s2681.s: driver for the Signetics SCN2681, Motorola 68681 and UMC UM26811 DUART.

• s2681clk.c: interval timing support using the timer on the S2681 DUARTs.

• vacser.s: driver for the serial-port on the VAC068 VME-bus controller.

• z8530.s: driver for the Z8530 DUART.

9.1 Common Device Files

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 92

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

Appendix A

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 93

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

References

[Sweet99]
See MIPS Run, Dominic Sweetman (of MIPS Technologies), 1999, Morgan Kaufman,
ISBN 1-55860-410-3.

We have to give special mention to this comprehensive guide to the MIPS Architecture and programming;
firstly because one of us wrote it, and secondly because if you read it carefully enough we'll save time on
support work.

 [Farq94]
The MIPS Programmers Handbook, Erin Farquhar & Philip Bunce, 1994, Morgan Kaufmann, ISBN 1-
55860-297-6.

Example-based programming book aimed at small MIPS-based systems.

[SGI96]
MIPSproTM Assembly Language Programmer's Guide, Silicon Graphics Inc.

[Kane92]
MIPS RISC Architecture, Gerry Kane and Joe Heinrich, 1992, Prentice Hall, ISBN 0-13-584210-7.

Reference manual to MIPS instructions, focussed on the machine instruction level.

[Kern88]
The C Programming Language (Second Edition), Brian W. Kernighan and Dennis M. Ritchie, 1988, Pren-
tice Hall, ISBN 0-13-110362-8.

Throw away all those cheerfully coloured fat books with big letters and lots of pictures. If you want to pro-
gram in C you need this and nothing else.

[Lewine91]
POSIX Programmer's Guide, Donald Lewine, 1991, O'Reilly, ISBN 0-937175-73-0.

An introduction to and complete set of manual pages for the POSIX.1 programming interface, of which the
SDE run-time system implements a generous subset.

Then there are reference works; we need to put these in, but you won’t read them unless you have to:

[POSIX88]
IEEE Standard 1003.1-1988, Institute of Electrical and Electronics Engineers Inc., 1985.

[ABI]
System V Applications Binary Interface - Revised Edition, Unix System Laboratories, Prentice Hall, ISBN 0-
13-877598-2.

[MIPSABI]
System V ABI MIPS Processor Supplement, Unix System Laboratories, Prentice Hall, ISBN 0-13-880170-3.

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 94

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

[ELF]
Understanding ELF Object Files and Debugging Tools, Mary Lou Nohr (Editor), Prentice Hall, ISBN 0-13-
091109-7.

[MD00410]
MIPS® SDE for Linux Getting Started Guide, MIPS Technologies, Inc.

The document which describes the SDE toolchain configured for native development Linux/MIPS kernels
and applications.

[MD00374]
MIPS32® Architecture for Programmers Volume IV-e: MIPS® DSP Application-Specific Extension to the
MIPS32® Architecture, MIPS Technologies, Inc.

[MD00378]
MIPS32® Architecture for Programmers Volume IV-f: MIPS® MT Application-Specific Extension to the
MIPS32® Architecture, MIPS Technologies, Inc.

You can't (so far as we know) buy the following GNU manuals, but they're provided as part of SDE:

 [Binutils]
All the object-code tools except the linker itself, which gets a separate manual [Ld].

 [Conv]
The SDE-specific ELF file conversion tool (sde\-conv).

 [Cpp]
The GNU C pre-processor; only for specialists.

[Gcc]
The compiler manual. Serious users should think about reading this through one time.

 [Gdb]
The debugger manual. Probably for reference only.

 [Gprof]
The profiler manual. Read this if you're planning to do performance analysis.

 [Ld]
The linker manual. Read this if you need to go beyond the tricks used in SDE examples.

 [Make]
Read this if you're keen to create makefiles even more exciting than those in the examples.

 [Stabs]
Documentation on the data structures used to pass debugging information.

Appendix B

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 95

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

Revision History

Change bars (vertical lines) in the margins of this document indicate significant changes in the document since its last
release. Change bars are removed for changes that are more than one revision old.

This document may refer to Architecture specifications (for example, instruction set descriptions and EJTAG register
definitions), and change bars in these sections indicate changes since the previous version of the relevant Architecture
document.

 Revision Date Description

1.1 October 18, 2004 • First version with this title. Based on an original document first published by
Algorithmics Ltd in 1995.

1.2 October 27, 2004 • Change SDEMakefile to SDEmakefile
• Warn upgraders about the new sde-insight command.
• Note that inter-module optimization is not available with C++.
• Add new errata.

1.3 October 27, 2003 • Updated errata and change history for 6.01.01 release.

1.4 December 14, 2004 • New for 6.01.02 release: addition of 64-bit support and N32 ABI.

1.5 March 22,2005 • New for 6.02.00 release. Addition of MIPS16, MIPS DSP, and MIPS MT
ASEs. Board support kits for AMVP environment.

1.6 March 24, 2005 • Removed errata fixed in final 6.02.00 release.

1.7 March 29, 2003 • Reenabled -mcode-xonly compiler option.

1.8 April 21, 2005 • Improved MIPS16 support, including “mips16” and “nomips16” per-func-
tion attributes.

1.9 May 26, 2005 • Added MT debugging section; hardware watchpoints; extended “set mdi
asid” command. Updated change history and errata for 6.02.02 release.

1.10 June 2, 2005 • Added AMD-64 Linux to list of supported hosts.

1.11 June 27, 2005 • Added a section listing the compiler's predefined macros.
• Updated change history for 6.02.03 release.

1.12 October 3, 2005 • Updated change history and errata for 6.03.00 release.

1.13 May 12, 2006 • Updated change history and errata for 6.04.00 beta release.

1.14 May 31, 2006 • Added multi-VPE debugging section, and updated change history and errata for
6.04.00 release.

1.15 October 5, 2006 • Expanded the MT debugging section. Updated change history and errata for
6.05.00 release.

1.16 January 19, 2007 • Documented 74K core family and new DSP ASE revision 2 intrinsics.
• Described new SDEthreads API and TSP support.
• Added new board targets. Updated change history and errata for 6.06.00

release.

1.17 April 20, 2007 • Updated 74K core family with new name changes. Updated change history for
6.06.01 release.

1.18 April 11, 2008 •

MIPS® SDE 6.x Programmer’s Guide, Revision 01.18 96

Copyright © 2000-2008 MIPS Technologies Inc. All rights reserved.

	MIPS® SDE 6.x Programmer’s Guide
	Table of Contents
	List of Tables
	Introduction
	Target-specific Libraries
	2.1 Building for ISA and CPU Variants

	Example Programs
	3.1 Individual Examples
	3.1.1 Hello World!
	3.1.2 TLB Exception Handling (tlbxcpt)
	3.1.3 Command Line Monitor (minimon)
	3.1.4 Floating Point Test (paranoia)
	3.1.5 Dhrystone Benchmark
	3.1.6 Whetstone Benchmark
	3.1.7 Linpack Benchmark
	3.1.8 C++ Demo
	3.1.9 Kit Test
	3.1.10 Flash Memory Test
	3.1.11 PCI Bus Demo
	3.1.12 Decompressing Boot Loader
	3.1.13 Linux AP/RP Communication
	3.1.14 Interrupt Example

	3.2 Example Makefiles

	Standard Libraries
	4.1 ISO / ANSI Library
	4.1.1 ISO C99 Library Support
	4.1.2 Thread Safety
	4.1.3 Minimal C Library

	4.2 IEEE-754 Floating Point Emulation Library
	4.3 Multilibs
	4.4 Library Source Code

	MIPS® Architecture Intrinsics
	5.1 Intrinsics for Byte Swapping
	5.2 Intrinsics for MIPS32® Architecture
	5.3 Intrinsics for MIPS32® Release 2 Architecture
	5.4 Intrinsics for MIPS64® Release 2 Architecture
	5.5 Intrinsics for CorExtendCoreTrade Extension
	5.6 Intrinsics for COP2 Extension
	5.7 Intrinsics for SmartMIPS® ASE
	5.8 Intrinsics for Paired-single/MIPS-3D® Architecture
	5.9 Intrinsics for MIPS MT ASE
	5.10 Intrinsics for MIPS DSP ASE
	5.10.1 Vector Data Types
	5.10.2 Scalar data types
	5.10.3 Compiler Builtin Functions
	5.10.4 Compiler Builtins for Second Revision
	5.10.5 Intrinsics for Atomic R-M-W
	5.10.6 Intrinsics for Data Prefetch

	SDE Run-time I/O System
	6.1 POSIX API Environment
	6.1.1 Remote File I/O
	6.1.1.1 Host File Access

	6.1.2 Terminal I/O (/dev/tty)
	6.1.3 Linux AP/RP Communication (/dev/lx#)
	6.1.4 Flash Memory Devices (/dev/flash)
	6.1.5 Alpha Display (/dev/panel)
	6.1.6 Signal Handling
	6.1.7 Elapsed Time Measurement
	6.1.8 Interval Timing
	6.1.9 PCI Bus Support

	CPU Management
	7.1 CPU Initialization
	7.2 Exception and Interrupt Handling
	7.2.1 C-level Exceptions
	7.2.1.1 Error Handling

	7.2.2 RTOS Context Switch
	7.2.3 C-level Interrupts
	7.2.3.1 Interrupt Priorities
	7.2.3.2 Software interrupts

	7.3 Cache Maintenance
	7.4 TLB Maintenance
	7.5 Hardware Watchpoints
	7.6 System Coprocessor (CP0) Intrinsics
	7.6.1 Common CP0 Registers
	7.6.2 CP0 Registers of MIPS32®/MIPS64® Architecture
	7.6.3 CP0 Registers of MIPS32®/MIPS64® Release 2 Architecture
	7.6.4 Shadow Sets of MIPS32®/MIPS64® Release 2 Architecture
	7.6.5 CP0 Registers of MIPS® MT ASE

	7.7 Miscellaneous System Support
	7.8 Floating Point Coprocessor (CP1)
	7.8.1 Coprocessor 1 Emulation

	Embedded System Kit Source
	8.1 POSIX System Interface
	8.1.1 Run-time Initialization
	8.1.2 Run-time Termination

	8.2 Target-specific Code
	8.2.1 PCI Bus Configuration

	8.3 Monitor-specific Glue
	8.4 Low-level CPU Management
	8.4.1 CPU Reset Handling
	8.4.2 Exception Handlers
	8.4.3 Remote Debug Stub
	8.4.3.1 Hardware-specific Debug Support
	8.4.3.2 Multi-threading Support

	Retargeting the Toolkit
	9.1 Common Device Files

	References
	Revision History

